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1.1 Introduction 
The terms caisson, pier, drilled shaft, and drilled pier are often used interchangeably 
in foundation engineering; all refer to a cast-in-place pile generally having a 
diameter of about 750 mm or more, with or without steel reinforcement and with or 
without an  enlarged bottom. Sometimes the diameter can be as small as 305 mm.  
 
The use of drilled-shaft foundations has several advantages: 
1. A single drilled shaft may be used instead of a group of piles and the pile cap. 
2. Constructing drilled shafts in deposits of dense sand and gravel is easier than 

Driving piles. 
3. Drilled shafts may be constructed before grading operations are completed. 
4. When piles are driven by a hammer, the ground vibration may cause damage to 

nearby structures.  
5. Piles driven into clay soils may produce ground heaving and cause previously 

driven piles to move laterally.  
6. There is no hammer noise during the construction of drilled shafts. 
7. Because the base of a drilled shaft can be enlarged, it provides great resistance to 

the uplifting load. 
8. The surface over which the base of the drilled shaft is constructed can be visually 

inspected. 
9. The construction of drilled shafts generally utilizes mobile equipment. 
10. Drilled shafts have high resistance to lateral loads. 
 
1.2 Types of Drilled Piers 
Drilled piers may be described under four types. All four types are similar in 
construction technique, but differ in their design assumptions and in the mechanism 
of load transfer to the surrounding earth mass. These types are illustrated in Fig. 1.1 
and as following: 

1. Straight –shaft end-bearing piers develop their support from end-bearing on 
strong soil, " hardpan" or rock. The overlying soil is assumed to contribute 
nothing to the support of the load imposed on the pier[Fig.1.1(a)]. 

2. Straight-shaft side wall friction piers pass through overburden soils that are 
assumed to carry none of the load, and penetrate far enough into an assign 
bearing stratum to develop design load capacity by side wall friction between 
the pier and bearing stratum to develop design load capacity by side wall 
friction between the pier and bearing stratum[Fig. 1.1(b)]. 

3. Combination of straight shaft side wall friction and end bearing piers are of 
the same construction as the two mention above, but with both side wall 
friction and end bearing assigned a role in carrying the design load. When 
carried into rock, this pier may be referred to as a socketed pier or a '' drilled 
pier with rock socket''[Fig. 1.1(c)]. 
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4. Belled or underreamed piers with a bottom bell or underream[Fig.1.1(d)]. A 
greater percentage of the imposed load on the pier top is assumed to be carried 
by the base. 

     
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.1 Types of drilled piers and underream shapes (Woodward et al., 1972) 
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1.3 Advantages and Disadvantages of Drilled Pier Foundations 
 
Advantages 
1. Pier of any length and size can be constructed at the site 
2. Construction equipment is normally mobile and construction can proceed rapidly 
3. Inspection of drilled holes is possible because of the larger diameter of the shafts 
4. Very large loads can be carried by a single drilled pier foundation thus eliminating 

the necessity of a pile cap 
5. The drilled pier is applicable to a wide variety of soil conditions 
6. Changes can be made in the design criteria during the progress of a job 
7. Ground vibration that is normally associated with driven piles is absent in drilled 

pier construction 
8. Bearing capacity can be increased by underreaming the bottom (in non-caving 

materials) 
 
Disadvantages 
1. Installation of drilled piers needs a careful supervision and quality control of all the 

materials used in the construction 
2. The method is cumbersome. It needs sufficient storage space for all the materials 

used in the construction 
3. The advantage of increased bearing capacity due to compaction in granular soil 

that could be obtained in driven piles is not there in drilled pier construction 
4. Construction of drilled piers at places where there is a heavy current of ground 

water flow due to artesian pressure is very difficult 
 
1.4 Construction Procedures 
There are three major types of construction methods: the dry method, the casing 
method, 
and the wet method. 
 
Dry Method of Construction 
This method is employed in soils and rocks that are above the water table and that 
will not cave in when the hole is drilled to its full depth. The sequence of 
construction, shown in Figure 1.2, is as follows: 
Step 1. The excavation is completed (and belled if desired), using proper drilling 

tools, and the spoils from the hole are deposited nearby. (See Fig. 1.2a.) 
Step 2. Concrete is then poured into the cylindrical hole. (See Fig. 1.2b.) 
Step 3. If desired, a rebar cage is placed in the upper portion of the shaft. (See Fig. 

1.2c.) 
Step 4. Concreting is then completed, and the drilled shaft will be as shown in Fig. 

1.2d. 
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Fig. 1.2 Dry method of construction: (a) initiating drilling; (b) starting concrete pour; 
(c) placing rebar cage; (d) completed shaft (Based on O’Neill and Reese, 1999) 
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Casing Method of Construction 
This method is used in soils or rocks in which caving or excessive deformation is 
likely to 
occur when the borehole is excavated. The sequence of construction is shown in Fig. 
1.3 
and may be explained as follows: 
Step 1. The excavation procedure is initiated as in the case of the dry method of 

construction. (See Fig. 1.3a.) 
Step 2. When the caving soil is encountered, bentonite slurry is introduced into the 

borehole. (See Fig. 10.3b.) Drilling is continued until the excavation goes past 
the caving soil and a layer of impermeable soil or rock is encountered. 

Step 3. A casing is then introduced into the hole. (See Fig. 1.3c.) 
Step 4. The slurry is bailed out of the casing with a submersible pump. (See Fig. 

1.3d.) 
Step 5. A smaller drill that can pass through the casing is introduced into the hole, 

and excavation continues. (See Fig. 1.3e.) 
Step 6. If needed, the base of the excavated hole can then be enlarged, using an 

underreamer. (See Fig. 1.3f.) 
Step 7. If reinforcing steel is needed, the rebar cage needs to extend the full length of 

the excavation. Concrete is then poured into the excavation and the casing is 
gradually pulled out. (See Fig. 1.3g.)  

Step 8. Fig. 1.3h shows the completed drilled shaft. 
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Fig. 1.3 Casing method of construction: (a) initiating drilling; (b) drilling with slurry; 
(c) introducing casing; (d) casing is sealed and slurry is being removed from interior 
of casing; (e) drilling below casing; (f) underreaming; (g) removing casing; (h) 
completed shaft (Based on O’Neill and Reese, 1999) 



 DRILLED-SHAFT AND CAISSON FOUNDATIONS                         

  
 

Wet Method of Construction 
This method is sometimes referred to as the slurry displacement method. Slurry is 
used to 
keep the borehole open during the entire depth of excavation. (See Figure 1.4) 
Following 
are the steps involved in the wet method of construction: 
Step 1. Excavation continues to full depth with slurry. (See Figure 1.4a.) 
Step 2. If reinforcement is required, the rebar cage is placed in the slurry. (See Figure 

1.4b.) 
Step 3. Concrete that will displace the volume of slurry is then placed in the drill 

hole. (See Figure 1.4c.) 
Step 4. Figure 1.4d shows the completed drilled shaft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.4 Slurry method of construction: (a) drilling to full depth with slurry; (b) 
placing rebar cage; (c) placing concrete; (d) completed shaft (After O’Neill and 
Reese, 1999) 
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1.5 DESIGN CONSIDERATIONS 
The process of the design of a drilled pier generally involves the following: 
1 . The objectives of selecting drilled pier foundations for the project. 
2. Analysis of loads coming on each pier foundation element. 
3. A detailed soil investigation and determining the soil parameters for the design. 
4. Preparation of plans and specifications which include the methods of design, 

tolerable settlement, methods of construction of piers, etc. 
5.The method of execution of the project. 
 
In general the design of a drilled pier may be studied under the following 
headings: 
1. Allowable loads on the piers based on ultimate bearing capacity theories. 
2. Allowable loads based on vertical movement of the piers. 
3. Allowable loads based on lateral bearing capacity of the piers. 
 
In addition to the above, the uplift capacity of piers with or without underreams 
has to be evaluated. The following types of strata are considered. 
1 . Piers embedded in homogeneous soils, sand or clay. 
2. Piers in a layered system of soil. 
3. Piers socketed in rocks. 
It is better that the designer select shaft diameters that are multiples of 150 mm (6 in) 
since these are the commonly available drilling tool diameters. 
 
For the design of ordinary drilled shafts without casings, a minimum amount of 
vertical steel reinforcement is always desirable. Minimum reinforcement is 1% of the 
gross cross-sectional area of the shaft. For drilled shafts with nominal reinforcement, 
most building codes suggest using a design concrete strength, fc , on the order of fc/4. 
Thus, the minimum shaft diameter becomes 

௦ܦ = ඨ ொೢ
ቀഏరቁ(଴.ଶହ)௙೎

ᇲ = 2.257ට
ொೢ
௙೎ᇲ

                                                              (1-1) 

 
where 
Ds = diameter of the shaft 
fc = 28-day concrete strength 
Qw = working load of the drilled shaft 
Ags = gross cross-sectional area of the shaft 
 
If drilled shafts are likely to be subjected to tensile loads, reinforcement should be 
continued 
for the entire length of the shaft. 
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Concrete Mix Design 
The concrete mix design for drilled shafts is not much different from that for any 
other concrete structure. When a reinforcing cage is used, consideration should be 
given to the ability of the concrete to flow through the reinforcement. In most cases, a 
concrete slump of about 15.0 mm (6 in.) is considered satisfactory. Also, the 
maximum size of the aggregate should be limited to about 20 mm (0.75 in.). 
 
1.6 Estimation of Load-Bearing Capacity - General 
The load-transfer mechanism from drilled shafts to soil is similar to that of piles as 
last described chapter. The ultimate load-bearing capacity of a drilled shaft           
(Fig. 1.5) is 
 
Qu= Qp + Qs                                                             (1-2)       

 
 
where 
Qu= ultimate load 
Qp = ultimate load-carrying capacity at the base 
Qs = frictional (skin) resistance 
 
The equation for the ultimate base load is similar to that for shallow foundations: 
 
 ܳ௣ = ௣(ܿᇱܣ ௖ܰ

∗ + ᇱݍ ௤ܰ
∗ + ௕ܦߛ0.3 ఊܰ

∗)                     (1-3) 
 
Where 
௖ܰ
∗, ௤ܰ

∗, ఊܰ
∗ = the bearing capacity factors 

 ᇱ= vertical effective stress at the level of the bottom of the pierݍ 
Db= diameter of the base (see Fig. 1.5a and b) 
Ap= area of the base= /4Db

2 
 
In most cases, the last term (containing ఊܰ

∗) is neglected except for relatively short 
drilled shafts, so 
 
ܳ௣ = ௣(ܿᇱܣ ௖ܰ

∗ + ᇱݍ ௤ܰ
∗)                                         (1-4) 

 
The net load-carrying capacity at the base (that is, the gross load minus the weight of 
the drilled shaft) may be approximated as 
 
ܳ௣(௡௘௧) = ௣(ܿᇱܣ ௖ܰ

∗ + ᇱݍ ௤ܰ
∗ − ᇱݍ = ௣[ܿᇱܣ ௖ܰ

∗ + )ᇱݍ ௤ܰ
∗ −1)]              (1-5) 

 
The expression for the frictional, or skin, resistance, Qs, is similar to that for piles 
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ܳ௦ = ∫ ௅భݖ݂݀݌

଴                                                                             (1-6) 
Where 
p=shaft perimeter=Ds 
f=unit frictional (or skin)resistance 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5 Ultimate bearing capacity of drilled shafts: (a) with bell and (b) straight 
shaft 
 
The following two sections describe the procedures for obtaining the ultimate and 
allowable load-bearing capacities of drilled shafts in sand and clay. 
 
  
 
 
 
 
 
 
 



 DRILLED-SHAFT AND CAISSON FOUNDATIONS                         

  
 

1.6 Drilled Shafts in Sand:  Load-Bearing Capacity 
Estimation of Qp 
For drilled shafts in sand, c'=0 and , hence Eq. (1-5) simplifies to  
 
ܳ௣(௡௘௧) = )ᇱݍ௣ܣ ௤ܰ

∗ − 1)                                                (1-7) 
 
Determination of  N୯∗ 	 is always a problem for deep foundation, as in the case of piles. 
Note, however, that all shafts are drilled, unlike the majority of piles, which are 
driven. The values of N୯∗ 	given by Vesic(1963)  are approximately the lower bound, 
and hence are used in this chapter (Fig. 1-6)  
 
The frictional resistance at ultimate load, Qs, developed in a drilled shaft may be 
calculated from the relation given in Eq.(1-6), in which 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.6 Vesic's bearing capacity factors, Nq
*, for deep foundations 

 
The magnitude of Qp(net) also can be reasonably estimated from a relationship based 
on the analysis of Berezantzev et al. (1961) that can be expressed as 
 
ܳ௣(௡௘௧) = ߱)ᇱݍ௣ܣ ௤ܰ

∗ − 1)                                            (1.8) 
 
where 
௤ܰ
∗= bearing capacity factor = 0.21e0.17' (See Table 1.1)            (1.9) 

߱ = correction factor = f (L/Db) 
In Eq. (1.9), ' is in degrees. The variation of v (interpolated values) with L/Db is 
given in Fig. (1.7). 
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Table 1.1 Variation of ௤ܰ
∗ with ' [Eq. (1.9)]     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Fig. 1.7 Variation of ߱ with ' and L/Db 
 
 
 
Estimation of Qs 
The frictional resistance at ultimate load, Qs , developed in a drilled shaft may be 
calculated as 
 
ܳ௦ = ∫ ௅భݖ݂݀݌

଴                                                             (1-6)                                             
 
 
 
 p= shaft perimeter= Ds 
f= unit frictional (or skin) resistance= Ko'tan'                  (1-10)  
K= earth – pressure coefficient  Ko= 1-sin' 

o'= effective vertical stress at any depth z 
Thus, 
 
ܳ௦ = ∫ ௅భݖ݂݀݌

଴ = ௦(1ܦߨ − (ᇱ∅݊݅ݏ ∫ ௢ᇱߪ tan ᇱߜ ݖ݀
௅భ
଴                 (1-11) 

 
The value of o

' will increase to a depth of about 15Ds and will remain constant 
thereafter, as shown in Figure 1.8. 
For cast-in-pile concrete and good construction techniques, a rough interface 
develops and, hence, '/' may be taken to be one. With poor slurry construction, 
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'/' < 0.7 to 0.8. 
 
Allowable Net Load, Qall (net) 
An appropriate factor of safety should be applied to the ultimate load to obtain the net 
allowable load, or 
 
ܳ௡௘௧(௔௟௟) =	

ொ೛(೙೐೟)ାொೞ
ிௌ

         (1-12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.8 Unit frictional resistance for piles in sand 
 
 
 
1.7 Load Bearing Capacity Based on Settlement 
 
On the basis of a database of 41 loading tests, Reese and O’Neill (1989) proposed a 
method for calculating the load-bearing capacity of drilled shafts that is based on 
settlement. The method is applicable to the following ranges: 
 
1. Shaft diameter: Ds = 0.52 to 1.2 m (1.7 to 3.93 ft) 
2. Bell depth: L = 4.7 to 30.5 m (15.4 to 100 ft) 
3. Field standard penetration resistance: N60 = 5 to 60 
4. Concrete slump = 100 to 225 mm (4 to 9 in.) 
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Fig. 1.9 Development of Eq.( 1-13 ) 
 
Reese and O’Neill’s procedure (see Figure 10.10) gives 
 
ܳ௨(௡௘௧) = ∑ ௜݂ܮ∆݌௜ +ே

௜ୀଵ  ௣      (1-13)ܣ௣ݍ
 
where 
fi = ultimate unit shearing resistance in layer i 
p = perimeter of the shaft = pDs 
qp = unit point resistance 
Ap = area of the base = (/4)D2

b 
 
Following are the relationships for determining ܳ௨(௡௘௧) in granular soils. Based on 
Eq. (1-13) 
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௜݂ = ௢௭௜ᇱߪߚ ≤ 192	݇ܰ/݉ଶ                       (1-14) 
ߚ = 1.5 − (0.25						௜଴.ହݖ0.244 ≤ ߚ ≤ 1.2)   (1-15) 
 
(where ݖ௜ is in m) 
 
௣ݍ ቀ

௞ே
௠మቁ = 	57.5	 ଺ܰ଴ ≤ 4310 ௞ே

௠మ ௕ܦ	ݎ݋݂)															 < 1.27݉)        (1-16) 
 
If Db 1.27m, excessive settlement may occur. In that case, qp may be replaced by 
 
௣௥ݍ =

ଵ.ଶ଻
஽್(௠)

 ௣                                                      (1-17)ݍ
 
Figs. 1.10 and 1.11 may now be used to calculate the allowable load Qall(net) based on 
the desired level of settlement. Example 1.2 shows the method of calculating the net 
allowable load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-10 Normalized based-load transfer versus settlement of sand  
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Fig. 1.11 Normalized side-load transfer versus settlement in sand 
 
 
Example 1.1 
Example 1.2 
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1.8 Drilled Shafts in Clay: Load-Bearing Capacity 
 
From Eq.(1-5), For saturated clays with  =0, ௤ܰ

∗  =1; hence the net base resistance 
becomes 
ܳ௣(௡௘௧) = ௣ܿ௨ܣ ௖ܰ

∗                                  (1-18) 
 
Where ܿ௨= undrained cohesion 
 
The bearing capacity factor ௖ܰ

∗ is usually taken to be 9. When the L/Db 4, ௖ܰ
∗=9, 

which is the condition for most drilled shafts. 
 
Experiments by Whitaker and Cooke (1966) showed that, for belled shafts, the full 
value of ௖ܰ

∗ =9 is realized with a base movement of about 10 to 15% of Db. Similarly, 
for straight shafts (Db=Ds), the full value of ௖ܰ

∗=9 is obtained with a base movement 
of about 20% of Db. 
 
The expression for the skin resistance of drilled shafts in clay is 
 
ܳ௦ = ∑ ௅ୀ௅భ∗ߙ

௅ୀ଴ ܿ௨(19-1)                                            ܮ∆݌ 
 
Where p= perimeter of the shaft cross section. 
the value of ߙ∗ that can be used in Eq. (1-19) has not yet been fully established 
however, the field test results available at this time indicate that ߙ∗ may vary between 
1.0 to 0.3. Kulhawy and Jackson (1989) reported the field-test result of 106 straight 
drilled shafts—65 in uplift and 41 in compression. The best correlation obtained from 
the results is 
 
∗ߙ = 0.21 + 0.25(௣ೌ

௖ೠ
) ≤ 1                                (1-20) 

 
Where pa= atmospheric pressure=100 kN/m2. 
           
  So, conservatively, we may assume that 
  
∗ߙ  = 0.4                                                             (1-21) 
 
Load-Bearing Capacity Based on Settlement 
Reese and O’Neill (1989) suggested a procedure for estimating the ultimate and 
allowable (based on settlement) bearing capacities for drilled shafts in clay. 
According to this procedure, we can use Eq. (1-13) for the net ultimate load, or 
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ܳ௨(௡௘௧) = ∑ ௜݂ܮ∆݌௜ +ே
௜ୀଵ  ௣                    (1-13)ܣ௣ݍ

 
The unit skin friction resistance can be given as 
 
௜݂ =  ௜∗ܿ௨(௜)                                                 (1-22)ߙ

 
The following values are recommended for ߙ௜∗: 
 
 ௜∗ =0 for the top 1.5m (5 ft) and bottom 1 diameter, Ds, of the drilled shaft. (Note: Ifߙ
Db  Ds, then a* = 0 for 1 diameter above the top of the bell and for the peripheral 
area of the bell itself.) 
 
 .௜∗ =0.55 elsewhereߙ
 
The expression for qp (point load per unit area) can be given as 
 
௣ݍ = 6ܿ௨௕ ቀ1 + 0.2 ௅

஽್
ቁ ≤ 9ܿ௨௕ ≤                           (1-23)	௔݌40

 
where 
cub = average undrained cohesion within a vertical distance of 2Db below the base 
pa = atmospheric pressure 
 
If Db is large, excessive settlement will occur at the ultimate load per unit area, qp, 
as given by Eq. (1.23). Thus, for Db 1.91 m (75 in.), qp may be replaced by 
 

	
௣௥ݍ =  ௣                                                                 (1-24)ݍ௥ܨ
 
Where 
 
௥ܨ =

ଶ.ହ
ఝభ஽್(௠௠)ାఝమ

≤ 1                                               (1-25) 
 
߮ଵ = 2.78 × 10ିସ + 8.26 × 10ିହ( ௅

஽್
) ≤ 5.9 × 10ିସ      (1-26) 

and 
߮ଶ = 0.065[ܿ௨௕(

௞ே
௠మ)]

଴.ହ                                              (1-27) 
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Figures (1-12) and (1-13) may now be used to evaluate the allowable load-bearing 
capacity, based on settlement. (Note that the ultimate bearing capacity in Figure (1-
13) is qb, not qbr). To do so 
Step 1. Select a value of settlement, s. 
Step 2. Calculate ∑ ௜݂ܮ∆݌௜	ܽ݊݀	ݍ௕ܣ௣ே

௜ୀଵ  
Step 3. Using Figures 1.12 and 1.13 and the calculated values in Step 2, determine 

the side load and the end bearing load. 
Step 4. The sum of the side load and the end bearing load gives the total allowable 

load. 

 

  
 
 
 
 
  
 
 
 
 
 
 
 
Fig 1.12 Normalized side-load transfer versus settlement in cohesive soil 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.13 Normalized base-load transfer versus settlement in cohesive soil 
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Example 1.3 
Example 1.4 
 
1.9 Lateral Load- Carrying Capacity  
 
The lateral load-carrying capacity of piers can be analyzed in a manner similar to that 
presented in last section for piles. Therefore, it will not be repeated here. 
 
 
1.10 Caissons  
1.10.1 Types of Caissons  
Caissons are divided into three major types:  
(1) open caissons,  
(2) box caissons (or closed caissons), and  
(3) pneumatic caissons.  
 
Open caissons (Figure 1.14) are concrete shafts that remain open at the top and 
bottom during construction. The bottom of the caisson of the caisson has a cutting 
edge. The caisson is sunk into place, and soil from the inside of the shaft is removed 
by grab buckets until the bearing stratum is reached. The shafts may be circular, 
square, rectangular, or oval. Once the bearing stratum is reached, concrete is poured 
into the shaft (under water) to form a seal at its bottom. When the concrete seal 
hardens, the water inside the caisson shaft is pumped out. Concrete is then poured 
into the shaft to fill it. Open caissons can be extended to great depths, and the cost of 
construction is relatively low. However, one of their major of disadvantages is the 
lack of quality control over the concrete poured into the shaft for the seal. Also, the 
bottom of the caisson cannot be thoroughly cleaned out. An alternative method of 
open-caisson construction is to drive some sheet piles to form an enclosed area, 
which is filled with sand and is generally referred to as a sand island. The caisson is 
then sunk through the sand to the desired bearing stratum. This procedure is 
somewhat analogous to sinking a caisson when the ground surface is above the water 
table. 
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Fig. 1.14 Open caisson 
 
Box caissons (Figure 1. 15) are caissons with closed bottoms. They are constructed 
on land and then transported to the construction site. They are gradually sunk at the 
site by filling the inside with sand, ballast, water, or concrete. The cost for this type 
of construction is low. The bearing surface must be level, and if it is not, it must be 
leveled by excavation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.15 Box caisson 



 DRILLED-SHAFT AND CAISSON FOUNDATIONS                         

  
 

Pneumatic caissons (Figure 1.16) are generally used for depths of about (15-40 m). 
This type of caisson is required when an excavation cannot be kept open because the 
soil flows into the excavated area faster than it can be removed. A pneumatic caisson 
has a work chamber at the bottom that is at least (3 m) high. In this chamber, the 
workers excavate the soil and place the concrete. The air pressure in the chamber is 
kept high enough to prevent water and soil from entering. Workers usually do not 
counter severe discomfort when the chamber pressure is raised to about 15 
lb/in2(.100 kN/m2) above atmospheric pressure. Beyond this pressure, decompression 
periods are required when the workers leave the chamber. When chamber pressures 
of about (300 kN/m2) above atmospheric pressure are required, workers should not be 
kept inside the chamber for more than 1122 hours at a time. Workers enter and leave 
the chamber through a steel shaft by means of a ladder. This shaft is also used for the 
removal of excavated soil and the placement of concrete. For large caisson 
construction, more than one shaft may be necessary, an airlock is provided for each 
one. Pneumatic caissons gradually sink as excavation proceeds. When the bearing 
stratum is reached, the work chamber is filled with concrete. Calculation of the load-
bearing capacity of caissons is similar to that for drilled shafts. Therefore, it will not 
be further discussed in this section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.16 Pneumatic caisson 
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1.11 Thickness of Concrete Seal in Open Caissons 
we mentioned that, before dewatering the caisson, a concrete seal is placed at the 
bottom of the shaft (Figure 1.17) and allowed to cure for some time. The concrete 
seal should be thick enough to withstand an upward hydrostatic force from it bottom 
after dewatering is complete and before concrete fills the shaft. Based on the theory 
of elasticity the thickness, t, according to Teng (1962) is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.17 Calculation of the thickness of seal for an open caisson 
 

ݐ = 1.18ܴ௜ට
௤
௙೎

         (circular caisson)             (1-28) 

and 

ݐ = ௜ඨܤ0.866
௤

௙௖[ଵାଵ.଺ଵ൬
ಽ೔
ಳ೔
൰]

      (rectangular caisson)      (1-29) 

Where  
Ri =inside radius of a circular caisson  
q =unit bearing pressure at the base of the caisson  
fc=allowable concrete flexural stress (.0.1-0.2 of fc

' where  fc
'   is than 28day 

compressive strength of concrete)  
Bi, Li =  inside with and length, respectively, of rectangular caisson  
 
According to Figure 1.17, the value of q in Equations (1-28 and 1-29) can be 
approximated as 
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qHw - tc                                                    (1-30) 
 
Where  
c.=unit weight of concrete 
 
The thickness of the seal calculated by Equations (1-28 and 1-29) will be sufficient 
to protect it from cracking immediately after dewatering. However, two other 
conditions should also be checked for safety.  
 
1. Check for Perimeter Shear an Contact Face of Seal and Shaft  
 
According to Figure 1-17, the net upward hydrostatic force from the bottom of the 
seal is ܣ௜ߛܪ௪ − ௜ܣ௖(whereߛݐ௜ܣ = ௜ܣ ௜ଶ for circular caissons andܴߨ =  ௜ forܮ௜ܤ
rectangular caissons). So the perimeter shear developed is 
 
߭ = ஺೔ுఊೢି஺೔௧ఊ೎

௣೔௧
                                         (1-31) 

 
Where  
pi= inside perimeter of the caisson  
 
Note that  
pi= 2Ri  (for circular caissons)                   (1-32) 
 
And that  
pi= 2(Bi +Li)  (for rectangular caisson)                           (1-33) 
 
The perimeter shear given by Eq. (1-31) should be less than the permissible shear 
stress, ߭௨, or  
 

ߥ ቀெே
௠మቁ ≤ 	 ௨ߥ ቀ

ெே
௠మቁ = 	0.17߶ට ௖݂

ᇱ(ெே
௠మ)                             (1-34)   

 
Where   
=0.85 
 
2. Check for Buoyancy  
If the shaft is completely dewatered, the buoyant upward force,Fu , is 
 
௨ܨ = ௪ߛܪ(௢ଶܴߨ)       (for circular caissons)                                     (1-35) 
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௨ܨ = ௪ߛܪ(௢ܮ௢ܤ)      (for rectangular caissons)                                (1-36) 
 
The downward force, Fd , is caused by the weight of the caisson and the seal and by 
the skin friction at the caisson-soil interface, or 
 
 
ௗܨ = ௖ܹ + ௦ܹ + ܳ௦                                                                 (1-37) 
 
Where  
௖ܹ=weight of caisson  
௦ܹ=weight of seal  

ܳ௦=skin friction 
 
If ܨௗ > ௗܨ ௨ , the caisson is safe from buoyancy. However, ifܨ <  ௨ dewatering theܨ
shaft completely will be unsafe. For that reason, the thickness of the seal should be 
increased by Δt [over the thickness calculated by using Equation (1-28) or (1-29)] or 
 
ݐ∆ = ிೠିி೏

஺೟ఊ೎
                                                                      (1-38) 

 
 
 
Example 1-5 
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2.1 Introduction 
  A retaining wall is a wall that provides lateral support for a vertical or near-vertical 
slope of soil. It is a common structure used in many construction projects. The most 
common types of retaining wall may be classified as follows: 
1. Gravity retaining walls 
2. Semigravity retaining walls 
3. Cantilever retaining walls 
4. Counterfort retaining walls 
 
  Gravity retaining walls (Figure 1.1a) are constructed with plain concrete or stone 
masonry. They depend for stability on their own weight and any soil resting on the 
masonry. This type of construction is not economical for high walls. 
  In many cases, a small amount of steel may be used for the construction of gravity 
walls, thereby minimizing the size of wall sections. Such walls are generally referred 
to as semigravity walls (Figure 1.1b). 
  Cantilever retaining walls (Figure 1.1c) are made of reinforced concrete that  
consists of a thin stem and a base slab. This type of wall is economical to a height of 
about 8 m.  
  Counterfort retaining walls (Figure 1.1d) are similar to cantilever walls. At regular 
intervals, however, they have thin vertical concrete slabs known as counterforts that 
tie the wall and the base slab together. The purpose of the counterforts is to reduce 
the shear and the bending moments. 
  To design retaining walls properly, an engineer must know the basic parameters— 
the unit weight, angle of friction, and cohesion—of the soil retained behind the wall 
and the soil below the base slab. Knowing the properties of the soil behind the wall 
enables the engineer to determine the lateral pressure distribution that has to be 
designed for. 
  There are two phases in the design of a conventional retaining wall. First, with the 
lateral earth pressure known, the structure as a whole is checked for stability. The 
structure is examined for possible overturning, sliding, and bearing capacity failures. 
Second, each component of the structure is checked for strength, and the steel 
reinforcement of each component is determined. 
This chapter presents the procedures for determination of lateral earth pressure and 
retaining-wall stability. 
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Figure 2.1 Types of retaining wall 
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2.2 Lateral Earth Pressure at Rest 
  Consider a vertical wall of height H, as shown in Figure 2.2, retaining a soil having 
a unit weight of . A uniformly distributed load, q/unit area,  is also applied at the 
ground surface. The shear strength of the soil is 
 
ݏ = ܿᇱ + ᇱߪ tan ∅ᇱ  
 
Where  
ܿᇱ = cohesion 
∅ᇱ = effective angle of friction 
 ᇱ = effective normal stressߪ
 
  At any depth z below the ground surface, the vertical subsurface stress is  
 
௢ᇱߪ = ݍ +  (2.1)                                                             ݖߛ
 
If the wall is at rest and is not allowed to move at all, either away from the soil mass 
or into the soil mass (i.e., there is zero horizontal strain), the lateral pressure at a 
depth z is 
 
௛ߪ = ௢ᇱߪ௢ܭ +  (2.2)               ݑ	
 
Where  
u= pore water pressure 
 ௢ = coefficient of at-rest earth pressureܭ
 
For normally consolidated soil, the relation for ܭ௢ (Jaky, 1944) is 
 
௢ܭ ≈ 1 −  ᇱ          (2.3)∅݊݅ݏ
 
Equation (2.3) is an empirical approximation. 
  For overconsolidated soil, the at-rest earth pressure coefficient may be expressed as 
(Mayne and Kulhawy, 1982) 
 
௢ܭ = (1 −  ௦௜௡∅ᇲ                     (2.4)ܴܥܱ(ᇱ∅݊݅ݏ
 
where OCR = overconsolidation ratio. 
 
  With a properly selected value of the at-rest earth pressure coefficient, Eq. (2.2) can 
be used to determine the variation of  lateral earth pressure with depth z. Figure 2.2b 
shows the variation of ߪ௛ᇱwith depth for the wall depicted in Figure 2.2a. Note that if 
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the surcharge q=0 and the pore water pressure the pressure u=0, diagram will be a 
triangle. The total force, Po , per unit length of the wall given in Figure 2.2a can now 
be obtained from the area of the pressure diagram given in Figure 2.2b and is  
 
௢ܲ = ଵܲ + ଶܲ = ܪ଴ܭݍ + ଵ

ଶ
 ௢                      (2.5)ܭଶܪߛ

 
where 
ଵܲ= area of rectangle 1 
ଶܲ= area of triangle 2 

  The location of the line of action of the resultant force, ௢ܲ, can be obtained by taking 
the moment about the bottom of the wall. Thus, 
 

̅ݖ =
௉భቀ

ಹ
మቁା௉మ(

ಹ
య)

௉೚
                                         (2.6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

Figure 2.2 At-rest earth pressure 
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  If the water table is located at a depth z H, the at-rest pressure diagram shown in 
Figure 2.2b will have to be somewhat modified, as shown in Figure 2.3. If the 
effective unit weight of soil below the water table equals  (i.e., sat - w ), then 
 
At z = 0 : ߪ௛ᇱ = ௢ᇱߪ௢ܭ = ݍ௢ܭ  
At z= H1 : ߪ௛ᇱ = ௢ᇱߪ௢ܭ = ݍ)௢ܭ + ଵܪߛ ) 
 
And  
At z =H2 , ߪ௛ᇱ = ௢ᇱߪ௢ܭ = ݍ)௢ܭ + ଵܪߛ +   (ଶܪᇱߛ
 
Note that in the preceding equations, ߪ௢ᇱ  and ߪ௛ᇱ are effective vertical and horizontal 
pressures, respectively. Determining the total pressure distribution on the wall 
requires adding the hydrostatic pressure, u, which is zero from z=0 to z= H1 and is 
௛ᇱߪ ଶ at z= H2. The variation ofܪ௪ߛ 	and u with depth is shown in Figure 2.3b. Hence, 
the total force per unit length of the wall can be determined from the area of the 
pressure diagram. Specifically, 
 
௢ܲ = ଵܣ + ଶܣ + ଷܣ + ସܣ +   ହܣ

 
where A= area of the pressure diagram. 
So, 
 

௢ܲ = ଵܪݍ௢ܭ +
1
2
ଵଶܪߛ௢ܭ + ݍ)௢ܭ + ଶܪ(ଵܪߛ +

1
2
ଶଶܪᇱߛ௢ܭ +

1
2
 ଶଶܪ௪ߛ

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 2.3 At-rest earth pressure with water table located at a depth z H 
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2.3 Active Pressure 
2.3.1 Rankine Active Earth Pressure 
  The lateral earth pressure described in Section 2.2 involves walls that do not yield at 
all. However, if a wall tends to move away from the soil a distance x as shown in 
Figure 1.4a, the soil pressure on the wall at any depth will decrease. For a wall that is 
frictionless, the horizontal stress, ߪ௛ᇱ 	,	at depth z will equal ܭ௢ߪ௢ᇱ(=  when x is (ݖߛ௢ܭ
zero. However, with x  0, ߪ௛ᇱ  will be less than ܭ௢ߪ௢ᇱ . 
  The Mohr’s circles corresponding to wall displacements of x =0 and x  0 are 
shown as circles a and b, respectively, in Figure 2.4b. If the displacement of the wall, 
x , continues to increase, the corresponding Mohr’s circle eventually will just touch 
the Mohr–Coulomb failure envelope defined by the equation 
 
ܵ = ܿᇱ +   ᇱ∅݊ܽݐᇱߪ
 
  This circle, marked c in the figure, represents the failure condition in the soil mass; 
the horizontal stress then equals ߪ௔ᇱ ,	referred to as the Rankine active pressure. The 
slip lines (failure planes) in the soil mass will then make angles of ±ቀ45 + ∅ᇲ

ଶ
ቁ with 

the horizontal, as shown in Figure 2.4a.  
  Equation (2.7) relates the principal stresses for a Mohr’s circle that touches the 
Mohr–Coulomb failure envelope: 
 
ଵᇱߪ = ଶ݊ܽݐଷᇱߪ ቀ45 +

∅ᇲ

ଶ
ቁ + 2ܿᇱtan	(45 + ∅ᇲ

ଶ
)                        (2.7) 

 
  For the Mohr’s circle c in Figure 2.4b, 
 
Major principle stress: ߪଵᇱ = ௢ᇱߪ  
and 
 
Minor principle stress:  ߪଷᇱ = ௔ᇱߪ  
Thus, 
 
௢ᇱߪ = ௔ᇱߪ ଶ݊ܽݐ ቀ45 +

∅ᇲ

ଶ
ቁ + 2ܿᇱtan	(45 + ∅ᇲ

ଶ
)  

 
 
௔ᇱߪ =

ఙ೚ᇲ

௧௔௡మ൬ସହା∅
ᇲ

మ ൰
− ଶ௖ᇲ

୲ୟ୬	(ସହା∅
ᇲ

మ )
  

 
or 
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௔ᇱߪ = ଶ݊ܽݐ௢ᇱߪ ቀ45 −
∅ᇲ

ଶ
ቁ − 2ܿᇱtan	(45 − ∅ᇲ

ଶ
)  

 
= ௔ܭ௢ᇱߪ − 2ܿᇱඥܭ௔                                (2.8) 
 
where  ܭ௔ = ଶ݊ܽݐ ቀ45 − ∅ᇲ

ଶ
ቁ = Rankine active pressure coefficient. 

 
  The variation of the active pressure with depth for the wall shown in Figure 2.4a is 
given in Figure 2.4c. Note that ߪ௢ᇱ = 0 at z= 0 and ߪ௢ᇱ =  at z=H. the pressure	ܪߛ
distribution shows that at z=0 the active pressure equals −2ܿᇱඥܭ௔ , indicating a 
tensile stress that decreases with depth and becomes zero at a depth z= zc , or  
 

  
௔ܭ௖ݖߛ − 2ܿᇱඥܭ௔ = 0  
 
And  
 
௖ݖ =

ଶ௖ᇲ

ఊඥ௄ೌ
                                             (2.9) 

 
  The depth zc is usually referred to as the depth of tensile crack, because the tensile 
stress in the soil will eventually cause a crak along the soil-wall interface. 
 
  Thus, the total Rankine active force per unit length of the wall before the tensile 
crack occurs is  
 
௔ܲ = 	∫ ݖ௔ᇱ݀ߪ = ∫ ுݖߛ

଴
ு
଴ ݖ௔݀ܭ − ∫ 2ܿᇱඥܭ௔݀ݖ

ு
଴   

 
= ଵ

ଶ
௔ܭଶܪߛ − 2ܿᇱܪඥܭ௔                                     (2.10) 

 
After the tensile crack appears, the force per unit length on the wall will be caused 
only by the pressure distribution between depths z= zc  and z= H as shown by the 
hatched area in Figure 2.4c. This force may be expressed as 
 
௔ܲ =

ଵ
ଶ
ܪ) − ௔ܭܪߛ)(௖ݖ − 2ܿᇱඥܭ௔	)                    (2.11) 

 
 

௔ܲ =
ଵ
ଶ
൬ܪ − ଶ௖ᇲ

ఊඥ௄ೌ
൰ ௔ܭܪߛ) − 2ܿᇱඥܭ௔	)               (2.12) 
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  However, it is important to realize that the active earth pressure condition will be 
reached only if the wall is allowed to “yield” sufficiently. The necessary amount of 
outward displacement of the wall is about 0.001H to 0.004H for granular soil 
backfills and about 0.01H to 0.04H for cohesive soil backfills. 
 
  Note further that if the total stress shear strength parameters (c, ) were used, an 
equation similar to Eq. (2.9) could have been derived, namely 

  
  

௔ߪ = ௢ߪ ଶ݊ܽݐ ቀ45 −
∅ᇲ

ଶ
ቁ − 2ܿ tan	(45 − ∅ᇲ

ଶ
)  

 
 
 
Example 2.1 
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Figure 2.4 Rankine active pressure 
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2.3.2 Rankine Active Earth Pressure for Inclined Backfill 
  If the backfill of a frictionless retaining wall is a granular soil (c' =0) and rises at an 
angle  with respect to the horizontal (see Figure 2.5), the active earth-pressure 
coefficient may be expressed in the form 
 

௔ܭ = ߙݏ݋ܿ ௖௢௦ఈିඥ௖௢௦మఈି௖௢௦మ∅ᇲ

௖௢௦ఈାඥ௖௢௦మఈି௖௢௦మ∅ᇲ
                           (2.13)            

  
where ∅ᇱ=angle of friction of soil. 
 
At any depth z, the Rankine active pressure may be expressed as  
 
௔ᇱߪ =  ௔                                                   (2.14)ܭଶܪߛ
      
 Also, the total force per unit length of the wall is 
 
௔ܲ =  ௔                                        (2.15)ܭଶܪߛ	1/2

 
 
  Note that, in this case, the direction of the resultant force ௔ܲ	is inclined at an angle 
with the horizontal and intersects the wall at a distance H/3 from the base of the wall. 
Table 2.1 presents the values of Ka  (active earth pressure) for various values of  
and ∅ᇱ. 
 

 
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 2.5 Notations for active pressure—Eqs. (2.13), (2.14), (2.15) 
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Table 2.1 Values of Ka [Eq. (2.13)] 

 
  

 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  

 
 
2.3.3 Coulomb's Active Earth Pressure 
  The Rankine active earth pressure calculations discussed in the preceding sections 
were based on the assumption that the wall is frictionless. In 1776, Coulomb 
proposed a theory for calculating the lateral earth pressure on a retaining wall with 
granular soil backfill. This theory takes wall friction into consideration. 
 
  To apply Coulomb’s active earth pressure theory, let us consider a retaining wall 
with its back face inclined at an angle with the horizontal, as shown in Figure 2.6a. 
The backfill is a granular soil that slopes at an angle  a with the horizontal. Also, let 
' be the angle of friction between the soil and the wall (i.e., the angle of wall 
friction). 
  Under active pressure, the wall will move away from the soil mass (to the left in the 
figure). Coulomb assumed that, in such a case, the failure surface in the soil mass 
would be a plane (e.g., BC1, BC2, … ). So, to find the active force, consider a 
possible soil failure wedge ABC1. The forces acting on this wedge (per unit length at 
right angles to the cross section shown) are as follows: 
 
1. The weight of the wedge, W. 
2. The resultant, R, of the normal and resisting shear forces along the surface,BC1. 
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  The force R will be inclined at an angle to the normal drawn to BC1.  
3. The active force per unit length of the wall, Pa, which will be inclined at an angle ' 

to the normal drawn to the back face of the wall. 
 
  For equilibrium purposes, a force triangle can be drawn, as shown in Figure 2.6b. 
Note that 1 is the angle that BC1 makes with the horizontal. Because the magnitude 
of W,as well as the directions of all three forces, are known, the value of Pa can now 
be determined. Similarly, the active forces of other trial wedges, such as ABC2, 
ABC3, …, can be determined. The maximum value of  Pa thus determined is 
Coulomb’s active force (see top part of Figure 2.7), which may be expressed as 

  
௔ܲ =  ௔                                        (2.16)ܭଶܪߛ	1/2

 
Where 
 
Ka= Coulomb's active earth-pressure coefficient 
 

= ௦௜௡మ(ఉି∅ᇲ)

௦௜௡మఉ ୱ୧୬(ఉିఋᇲ)቎ଵାඨ౩౟౤൫∅
ᇲశഃᇲ൯౩౟౤(∅ᇲషഀ)

౩౟౤൫ഁశഃᇲ൯౩౟౤(ഀశഁ)
቏

మ              (2.17) 

 
and H= height of the wall. 
 
  The values of the active earth pressure coefficient, Ka ,for a vertical retaining wall 
 are given in Table 2.2. Note that the line  (0o = ߙ) with horizontal backfill (90o = ߚ)
of action of the resultant force (Pa) will act at a distance H/3 above the base of the 
wall and will be inclined at an angle ' to the normal drawn to the back of the wall. 
  In the actual design of retaining walls, the value of the wall friction angle ' is 
assumed to be between ∅ᇱ/2 and 2/3∅ᇱ. The active earth pressure coefficients for 
various values of ∅ᇱ,  and  with ∅ᇱ/2 and 2/3∅ᇱ are respectively given in  ,ߙ
Tables 2.3 and 2.4. These coefficients are very useful design considerations. 
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Figure 2.6 Coulomb’s active pressure 
 
 

Table 2.2 Values of Ka  Eq(2.17) for =90o and =0o 
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Table 2.3 Values of Ka  Eq(2.17) for ' = 2/3 ' 
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Table 2.3 Values of Ka  Eq(2.17) for ' = 2/3 ' 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.4 Values of Ka  Eq(2.17) for ' = 1/2 ' 
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Table 2.4 Values of Ka  Eq(2.17) for ' = 1/2 ' 
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2.4 Passive Pressure  
2.4.1 Rankine Passive Earth Pressure 
  Figure 2.8a shows a vertical frictionless retaining wall with a horizontal backfill. At 
depth z, the effective vertical pressure on a soil element is '

o=z Initially, if the wall 
does not yield at all, the lateral stress at that depth will be '

h=Ko'
o . This state of 

stress is illustrated by the Mohr’s circle a in Figure 2.8b. Now, if the wall is pushed 
into the soil mass by an amount x as shown in Figure 2.8a, the vertical stress at 
depth z will stay the same; however, the horizontal stress will increase. Thus, '

h will 
be greater than Ko'

o . The state of stress can now be represented by the Mohr’s circle 
b in Figure 2.8b. If the wall moves farther inward (i.e., is increased still more), the 
stresses at depth z will ultimately reach the state represented by Mohr’s circle c. Note 
that this Mohr’s circle touches the Mohr–Coulomb failure envelope, which implies 
that the soil behind the wall will fail by being pushed upward. The horizontal stress, 
'

h , at this point is referred to as the Rankine passive pressure, or '
h = '

p . 
  For Mohr’s circle c in Figure 2.8b, the major principal stress is '

p and the minor 
principal stress is '

o .Substituting these quantities into Eq. (2.8) yields 
 

௣ᇱߪ = ଶ݊ܽݐ௢ᇱߪ ቀ45 +
∅ᇲ

ଶ
ቁ + 2ܿᇱtan	(45 + ∅ᇲ

ଶ
)        (2.18) 

 
Kp= Rankine passive earth-pressure coefficient 
௣ܭ  = ଶ݊ܽݐ ቀ45 + ∅ᇲ

ଶ
ቁ                             (2.19) 

 
௣ᇱߪ = ௣ܭ௢ᇱߪ + 2ܿᇱඥܭ௣                             (2.20) 
 
  Equation (2.20) produces (Figure 2.18c), the passive pressure diagram for the wall 
shown in Figure 2.18a. Note that at z=0 
 
௢ᇱߪ = ௣ᇱߪ		݀݊ܽ		0 = 2ܿᇱඥܭ௣  
 
and at z= H 
  
௢ᇱߪ = ௣ᇱߪ		݀݊ܽ		ܪߛ = ௣ܭܪߛ + 2ܿᇱඥܭ௣   
 
  The passive force per unit length of the wall can be determined from the area of the 
pressure diagram, or  
 
௣ܲ =

ଵ
ଶ
௣ܭଶܪߛ + 2ܿᇱܪඥܭ௣                                 (2.21) 
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  The approximate magnitudes of the wall movements, x , required to develop 
failure under passive conditions are as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Rankine passive pressure 
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  If the backfill behind the wall is a granular soil (i.e., c'=0 ), then, from Eq. (2.21), the 
passive force per unit length of the wall will be 

 
௣ܲ =

ଵ
ଶ
 ௣                                      (2.22)ܭଶܪߛ

 
 
2.4.2 Rankine Passive Earth Pressure for Inclined Backfill 
   For a frictionless vertical retaining wall (Figure 2.5) with a granular backfill (c'=0), 
the Rankine passive pressure at any depth can be determined in a manner similar to 
that done in the case of active pressure in Section 2.3.2. The pressure is  
 
௣ᇱߪ =  ௣                                (2.23)ܭݖߛ	
 
And the passive force is  
 
௣ܲ =  ௣                          (2.24)ܭଶܪߛ	1/2

 
where 
 

௣ܭ = ߙݏ݋ܿ ௖௢௦ఈାඥ௖௢௦మఈି௖௢௦మ∅ᇲ

௖௢௦ఈିඥ௖௢௦మఈି௖௢௦మ∅ᇲ
                           (2.25)            

  
  As in the case of the active force, the resultant force, Pp, is inclined at an angle  
with the horizontal and intersects the wall at a distance  H/3 from the bottom of the 
wall. The values of Kp (the passive earth pressure coefficient) for various values of  
and ' 

 are given in Table 2.6. 
 

Table 2.6 Passive Earth Pressure Coefficient [from Eq. (2.25)] 
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2.4.3 Coulomb's Passive Earth Pressure 
  Coulomb (1776) also presented an analysis for determining the passive earth 
pressure (i.e., when the wall moves into the soil mass) for walls possessing friction 
('=angle of wall friction) and retaining a granular backfill material similar to that 
discussed in Section 2.3.3. 
To understand the determination of Coulomb’s passive force, Pp , consider the wall 
shown in Figure 2.9a. As in the case of active pressure, Coulomb assumed that the 
potential failure surface in soil is a plane. For a trial failure wedge of soil, such as 
ABC1, the forces per unit length of the wall acting on the wedge are 
 
1. The weight of the wedge, W 
2. The resultant, R, of the normal and shear forces on the plane and 
3. The passive force, Pp 
 
  Figure 2.9b shows the force triangle at equilibrium for the trial wedge ABC1. From 
this force triangle, the value of Pp can be determined, because the direction of all 
three forces and the magnitude of one force are known. 
  Similar force triangles for several trial wedges, such as ABC1, ABC2, ABC3, … can 
be constructed, and the corresponding values of Pp can be determined. The top part of 
Figure 2.9a shows the nature of variation of Pp the values for different wedges. The 
minimum value of Pp in this diagram is Coulomb’s passive force, mathematically 
expressed as 
 
 
௔ܲ =  ௣                                        (2.26)ܭଶܪߛ	1/2

 
Where 
 
Ka= Coulomb's passive earth-pressure coefficient 
 

= ௦௜௡మ(ఉି∅ᇲ)

௦௜௡మఉ ୱ୧୬(ఉାఋᇲ)቎ଵିඨ౩౟౤൫∅
ᇲశഃᇲ൯౩౟౤(∅ᇲశഀ)

౩౟౤൫ഁశഃᇲ൯౩౟౤(ഀశഁ)
቏

మ              (2.27) 

 
and H= height of the wall. 
 
 The values of the passive pressure coefficient, Kp, for various values of	∅ᇱ and ' are 
given in Table 2.7 (90 = ߚo , 0 = ߙo ). 
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  Note that the resultant passive force, Pp , will act at a distance H/3 from the bottom 
of the wall and will be inclined at an angle ' to the normal drawn to the back face of 
the wall. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9Coulomb’s passive pressure 
 

Table 7.10 Values of [from Eq. (2.27)] for =90o and =0o 
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1. Introduction 
  A retaining wall is a wall that provides lateral support for a vertical or near-vertical 
slope of soil. It is a common structure used in many construction projects. The most 
common types of retaining wall may be classified as follows: 
1. Gravity retaining walls 
2. Semigravity retaining walls 
3. Cantilever retaining walls 
4. Counterfort retaining walls 
 
  Gravity retaining walls (Figure 3.1a) are constructed with plain concrete or stone 
masonry. They depend for stability on their own weight and any soil resting on the 
masonry. This type of construction is not economical for high walls. 
  In many cases, a small amount of steel may be used for the construction of gravity 
walls, thereby minimizing the size of wall sections. Such walls are generally referred 
to as semigravity walls (Figure 3.1b). 
  Cantilever retaining walls (Figure 3.1c) are made of reinforced concrete that  
consists of a thin stem and a base slab. This type of wall is economical to a height of 
about 8 m as Figure (3.2).  
  Counterfort retaining walls (Figure 3.1d) are similar to cantilever walls. At regular 
intervals, however, they have thin vertical concrete slabs known as counterforts that 
tie the wall and the base slab together. The purpose of the counterforts is to reduce 
the shear and the bending moments. 
  To design retaining walls properly, an engineer must know the basic parameters— 
the unit weight, angle of friction, and cohesion—of the soil retained behind the wall 
and the soil below the base slab. Knowing the properties of the soil behind the wall 
enables the engineer to determine the lateral pressure distribution that has to be 
designed for. 
  There are two phases in the design of a conventional retaining wall. First, with the 
lateral earth pressure known, the structure as a whole is checked for stability. The 
structure is examined for possible overturning, sliding, and bearing capacity failures. 
Second, each component of the structure is checked for strength, and the steel 
reinforcement of each component is determined. 
This chapter presents the procedures for determination of lateral earth pressure and 
retaining-wall stability. 
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Figure 3.1 Types of retaining wall 
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1.2 Lateral Earth Pressure at Rest 
  Consider a vertical wall of height H, as shown in Figure 1.2, retaining a soil having 
a unit weight of . A uniformly distributed load, q/unit area,  is also applied at the 
ground surface. The shear strength of the soil is 
 
ݏ = ܿᇱ + ᇱߪ tan ∅ᇱ  
 

Figure 3.2 A cantilever retaining wall under construction  
 
3.2 Gravity and Cantilever Walls 
3.2.1 Proportioning Retaining Walls 
 
  In designing retaining walls, an engineer must assume some of their dimensions. 
Called proportioning, such assumptions allow the engineer to check trial sections of 
the walls for stability. If the stability checks yield undesirable results, the sections can 
be changed and rechecked. Figure 3.3 shows the general proportions of various 
retaining-wall components that can be used for initial checks. 
  Note that the top of the stem of any retaining wall should not be less than about 
0.3 m. for proper placement of concrete. The depth,  D, to the bottom of the base slab 
should be a minimum of 0.6m. However, the bottom of the base slab should be 
positioned below the seasonal frost line. 
  For counterfort retaining walls, the general proportion of the stem and the base slab 
is the same as for cantilever walls. However, the counterfort slabs may be about 0.3 
m thick and spaced at center-to-center distances of 0.3H to 0.7H. 
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Figure 3.3 Approximate dimensions for various components of retaining wall for 
initial stability checks: (a) gravity wall; (b) cantilever wall 

 
 
3.3 Application of Lateral Earth Pressure Theories to Design 
  The fundamental theories for calculating lateral earth pressure were presented in 
Chapter 2. To use these theories in design, an engineer must make several simple 
assumptions. In the case of cantilever walls, the use of the Rankine earth pressure 
theory for stability checks involves drawing a vertical line AB through point A, 
located at the edge of the heel of the base slab in Figure 3.4a. The Rankine active 
condition is assumed to exist along the vertical plane AB. Rankine active earth 
pressure equations may then be used to calculate the lateral pressure on the face AB 
of the wall. In the analysis of the wall’s stability, the force  Pa(Rankine) , the weight of 
soil above the heel, and the weight Wc of the concrete all should be taken into 
consideration. The assumption for the development of Rankine active pressure along 
the soil face AB is theoretically correct if the shear zone bounded by the line AC is 
not obstructed by the stem of the wall. The angle, h, that the line AC makes with the 
vertical is 
 
                         (3-1) 
 
  A similar type of analysis may be used for gravity walls, as shown in Figure 3.4b. 
However, Coulomb’s active earth pressure theory also may be used, as shown in 
Figure 3.4c. If it is used, the only forces to be considered are Pa(Coulomb) and the weight 
of the wall, Wc. 
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Figure 3.4 Assumption for the determination of lateral earth pressure: (a) cantilever 

wall; (b) and (c) gravity wall 
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Figure 3.4 (continued) 
 
  If Coulomb’s theory is used, it will be necessary to know the range of the wall 
friction angle  '  with various types of backfill material. Following are some ranges 
of wall friction angle for masonry or mass concrete walls: 
 
 
 
 
 
 
 
 
 
 
 
 
  In the case of ordinary retaining walls, water table problems and hence hydrostatic 
pressure are not encountered. Facilities for drainage from the soils that are retained 
are always provided. 
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3.4 Stability of Retaining Walls 
  A retaining wall may fail in any of the following ways: 
● It may overturn about its toe. (See Figure 3.5a.) 
● It may slide along its base. (See Figure 3.5b.) 
● It may fail due to the loss of bearing capacity of the soil supporting the base. (See 

Figure 3.5c.) 
● It may undergo deep-seated shear failure. (See Figure 3.5d.) 
● It may go through excessive settlement. 
 
  The checks for stability against overturning, sliding, and bearing capacity failure 
will be described in Sections 3.5, 3.6, and 3.7. When a weak soil layer is located at a 
shallow depth—that is, within a depth of 1.5 times the width of the base slab of the 
retaining wall—the possibility of excessive settlement should be considered. In some 
cases, the use of lightweight backfill material behind the retaining wall may solve the 
problem.  
  Deep shear failure can occur along a cylindrical surface, such as abc shown in 
Figure 3.6, as a result of the existence of a weak layer of soil underneath the wall at a 
depth of about 1.5 times the width of the base slab of the retaining wall. In such 
cases, the critical cylindrical failure surface abc has to be determined by trial and 
error, using various centers such as O. The failure surface along which the minimum 
factor of safety is obtained is the critical surface of sliding. For the backfill slope 
with   less than about 10o , the critical failure circle apparently passes through the 
edge of the heel slab (such as def in the figure). In this situation, the minimum factor 
of safety also has to be determined by trial and error by changing the center of the 
trial circle. 
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Figure 3.5 Failure of retaining wall: (a) by overturning; (b) by sliding; 
(c) by bearing capacity failure; (d) by deep-seated shear failure 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Deep-seated shear failure 
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3.5 Check for Overturning 
Figure 3.7 shows the forces acting on a cantilever and a gravity retaining wall, based 
on the assumption that the Rankine active pressure is acting along a vertical plane AB 
drawn through the heel of the structure. Pp is the Rankine passive pressure; recall that 
its magnitude is 
 
௣ܲ =

ଵ
ଶ
ଶܦଶߛ௣ܭ + 2ܿଶᇱඥܭ௣ܦ  

 
where 
2= unit weight of soil in front of the heel and under the base slab 
Kp = Rankine passive earth pressure coefficient 5 tan2s45 1 f92y2d 
c2

'  , 2
' = cohesion and effective soil friction angle, respectively 

   
  The factor of safety against overturning about the toe—that is, about point C in 
Figure 3.7—may be expressed as 
 
(௢௩௘௥௧௨௥௡௜௡௚)ܵܨ =

∑ெೃ
∑ெ೚

                 (3-2) 
 
where 
 ோ= sum of the moments of forces tending to overturn about point Cܯ∑
 ௢ = sum of the moments of forces tending to resist overturning about point Cܯ∑
 
  The overturning moment is 
                    
                        (3-3) 
 
 
Where ௛ܲ = ௔ܲܿߙݏ݋  
 
  To calculate the resisting moment, ∑ܯோ (neglecting Pp), a table such as Table 3.1 
can be prepared. The weight of the soil above the heel and the weight of the concrete 
(or masonry) are both forces that contribute to the resisting moment. Note that the 
force Pv also contributes to the resisting moment. Pv is the vertical component of the 
active force Pa , or 
 
௩ܲ = ௔ܲߙ݊݅ݏ  

 
The moment of the force Pv about C is 
 
௩ܯ = ௩ܲܤ = ௔ܲ(4-3)                        ܤߙ݊݅ݏ 
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where B = width of the base slab. 
Once ∑ܯோ  is known, the factor of safety can be calculated as 
 
                                    
                     (3-5) 
 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 3.7 Check for overturning, assuming that the  
Rankine pressure is valid 
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Table 3.1 Procedure for Calculating ∑ܯோ 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  The usual minimum desirable value of the factor of safety with respect to 
overturning is 2 to 3. 
  Some designers prefer to determine the factor of safety against overturning with the 
formula  
 
                                        (3-6) 
 
 
 
3.6 Check for Sliding along the Base 
  The factor of safety against sliding may be expressed by the equation 
 
(௦௟௜ௗ௜௡௚)ܵܨ =

∑ிೃ
∑ி೏

     (3-7) 
 
where 
 ோ = sum of the horizontal resisting forcesܨ∑
 ௗ = sum of the horizontal driving forcesܨ∑
   
  Figure 3.8 indicates that the shear strength of the soil immediately below the base 
slab may be represented as 
 
       
where 
' =  angle of friction between the soil and the base slab 
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ca
'  = adhesion between the soil and the base slab 

 
Thus, the maximum resisting force that can be derived from the soil per unit length of 
the wall along the bottom of the base slab is 
 
 
However, 
          (see Table 3.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Check for sliding along the base 
 
Figure 3.8 shows that the passive force Pp is also a horizontal resisting force. Hence, 
 
 
                (3-8)      
    
  The only horizontal force that will tend to cause the wall to slide (a driving force) is 
the horizontal component of the active force Pa , so 
                                                (3-9) 
 
Combining Eqs. (3.7), (3.8), and (3.9) yields 
 
                (3-10) 
 
  A minimum factor of safety of 1.5 against sliding is generally required. 
  In many cases, the passive force Pp is ignored in calculating the factor of safety with 
respect to sliding. In general, we can write ' =k12

' and ca
'=k2c2

'. In most cases, k1 and 
k2 are in the range from 1/2 to 2/3. Thus, 
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            (3-11) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Alternatives for increasing the factor of safety with respect to sliding 
 
  If the desired value of FS(sliding) is not achieved, several alternatives may be 
investigated (see Figure 3.9): 
● Increase the width of the base slab (i.e., the heel of the footing). 
● Use a key to the base slab. If a key is included, the passive force per unit length of 

the wall becomes 
 
                    
 

 
 
● Use a deadman anchor at the stem of the retaining wall. 
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3.7 Check for Bearing Capacity Failure 
  The vertical pressure transmitted to the soil by the base slab of the retaining wall 
should be checked against the ultimate bearing capacity of the soil. The nature of 
variation of the vertical pressure transmitted by the base slab into the soil is shown in 
Figure 3.11. Note that qtoe and qheel are the maximum and the minimum pressures 
occurring at the ends of the toe and heel sections, respectively. The magnitudes of qtoe 
and qheel can be determined in the following manner: 
  The sum of the vertical forces acting on the base slab is ∑ܸ (see column 3 of Table 
3.1), and the horizontal force Ph is Pa cos. Let 
 
ܴ = ∑ܸ + ௛ܲ                               (3-12) 
 
be the resultant force. The net moment of these forces about point C in Figure 3.11 is 
 
         (3-`13) 
 
  Note that the values of ∑ܯோ	and ∑ܯ௢ were previously determined. [See Column 5 
of  Table 3.1 and Eq. (3.3)]. Let the line of action of the resultant R intersect the base 
slab at E. Then the distance 
 
 
      (3-14) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 Check for bearing capacity failure 
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Hence, the eccentricity of the resultant R may be expressed as 
 
 
        (3.15) 
 
  The pressure distribution under the base slab may be determined by using simple 
principles from the mechanics of materials. First, we have 
 

        (3.16) 
 
where 
Mnet  =moment =( ∑ܸ)e 
I = moment of inertia per unit length of the base section = 1/12(1)(B2) 
 
  For maximum and minimum pressures, the value of y in Eq. (3.16) equals B/2. 
Substituting into Eq. (3.16) gives 
 
                      
                  (3.17) 
 
 
Similarly 
 
 
          (3.18) 
 
  Note that ∑ܸ includes the weight of the soil, as shown in Table 3.1, and that when 
the value of the eccentricity e becomes greater than B/6, qmin [Eq. (3.18)] becomes 
negative. Thus, there will be some tensile stress at the end of the heel section. This 
stress is not desirable, because the tensile strength of soil is very small. If the analysis 
of a design shows that e . B/6, the design should be reproportioned and calculations 
redone. The relationships pertaining to the ultimate bearing capacity of a shallow 
foundation were discussed in previous Chapter . Recall that  
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            (3.19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the shape factors Fcs , Fqs , and Fs given in previous Chapter  are all equal 
to unity, because they can be treated as a continuous foundation. For this reason, the 
shape factors are not shown in Eq. (13.19). 
  Once the ultimate bearing capacity of the soil has been calculated by using 
Eq. (13.19), the factor of safety against bearing capacity failure can be determined: 
 

    (3.20) 
  Generally, a factor of safety of 3 is required. We noted that the ultimate bearing 
capacity of shallow foundations occurs at a settlement of about 10% of the foundation 
width. In the case of retaining walls, the width B is large. Hence, the ultimate load qu 
will occur at a fairly large foundation settlement. A factor of safety of 3 against 
bearing capacity failure may not ensure that settlement of the structure will be within 
the tolerable limit in all cases. Thus, this situation needs further investigation. 
 
Example 1 
Example 2 
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3.8 Construction Joints and Drainage from Backfill 
Construction Joints 
A retaining wall may be constructed with one or more of the following joints: 
1. Construction joints (see Figure 3.12a) are vertical and horizontal joints that are 

placed between two successive pours of concrete. To increase the shear at the 
joints, keys may be used. If keys are not used, the surface of the first pour is 
cleaned and roughened before the next pour of concrete. 

 
2. Contraction joints (Figure 3.12b) are vertical joints (grooves) placed in the face of 

a wall (from the top of the base slab to the top of the wall) that allow the concrete 
to shrink without noticeable harm. The grooves may be about 6 to 8 mm wide and 
12 to 16 mm deep. 

 
3. Expansion joints (Figure 3.12c) allow for the expansion of concrete caused by 

temperature changes; vertical expansion joints from the base to the top of the wall 
may also be used. These joints may be filled with flexible joint fillers. In most 
cases, horizontal reinforcing steel bars running across the stem are continuous 
through all joints. The steel is greased to allow the concrete to expand. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12 (a) Construction joints; (b) contraction joint; (c) expansion joint 
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Drainage from the Backfill 
  As the result of rainfall or other wet conditions, the backfill material for a retaining 
wall may become saturated, thereby increasing the pressure on the wall and perhaps 
creating an unstable condition. For this reason, adequate drainage must be provided 
by means of weep holes or perforated drainage pipes. (See Figure 3.13.) 
 
  When provided, weep holes should have a minimum diameter of about 0.1 m and be 
adequately spaced. Note that there is always a possibility that backfill material may 
be washed into weep holes or drainage pipes and ultimately clog them. Thus, a filter 
conductivity (in this case, the backfill material). The preceding conditions can be 
satisfied if the following requirements are met (Terzaghi and Peck, 1967): 
 
஽భఱ(ಷ)
஽ఴఱ(ಳ)

<  (3.21)         [(ܽ)݊݋݅ݐ݅݀݊݋ܿ	ݕ݂ݏ݅ݐܽݏ	݋ݐ]			5

 
 
஽భఱ(ಷ)
஽భఱ(ಳ)

>  (3.22)         [(ܾ)݊݋݅ݐ݅݀݊݋ܿ	ݕ݂ݏ݅ݐܽݏ	݋ݐ]			4

 
  In these relations, the subscripts F and B refer to the filter and the base material (i.e., 
the backfill soil), respectively. Also, D15 and D85 refer to the diameters through which 
15% and 85% of the soil (filter or base, as the case may be) will pass. Example 3.3 
gives the procedure for designing a filter. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 Drainage provisions for the backfill of a retaining wall: (a) by weep 
holes; (b) by a perforated drainage pipe 
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4.1. Introduction 
  Connected or semi-connected sheet piles are often used to build continuous walls 
for waterfront structures that range from small waterfront pleasure boat launching 
facilities to large dock facilities. (See Figure 4.1). In contrast to the construction of 
other types of retaining wall, the building of sheet-pile walls does not usually require 
dewatering of the site. Sheet piles are also used for some temporary structures, such 
as braced cuts. (See Chapter 5). The principles of sheet-pile wall design are discussed 
in the current chapter. 
  Several types of sheet pile are commonly used in construction:  
   (a) wooden sheet piles,  
   (b) precast concrete sheet piles, and  
   (c) steel sheet piles.  
    Aluminum sheet piles are also marketed. 
 
(a)Wooden sheet piles are used only for temporary, light structures that are above the 
water table. The most common types are ordinary wooden planks and Wakefield 
piles. The wooden planks are about 50 mm × 300 mm (2 in. × 12 in.) in cross section 
and are driven edge to edge (Figure 4.2a). Wakefield piles are made by nailing three 
planks together, with the middle plank offset by 50 to 75 mm (2 to 3 in.) (Figure 
4.2b). Wooden planks can also be milled to form tongue-and-groove piles, as shown 
in Figure 4.2c. Figure 4.2d shows another type of wooden sheet pile that has precut 
grooves. Metal splines are driven into the grooves of the adjacent sheetings to hold 
them together after they are sunk into the ground.   
 
 

  
  
  
  
  
  
  
  
  
  
  

Figure 4.1 Example of waterfront sheet-pile wall. 
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Figure 4.2 Various types of wooden and concrete sheet pile 
 

Precast concrete sheet piles are heavy and are designed with reinforcements to 
withstand the permanent stresses to which the structure will be subjected after 
construction and also to handle the stresses produced during construction. In cross 
section, these piles are about 500 to 800 mm (20 to 32 in.) wide and 150 to 250 mm 
(6 to 10 in.) thick. Figure 4.2e is a schematic diagram of the elevation and the cross 
section of a reinforced concrete sheet pile. 
 
Steel sheet piles in the United States are about 10 to 13 mm (0.4 to 0.5 in.) thick. 
European sections may be thinner and wider. Sheet-pile sections may be Z, deep 
arch, low arch, or straight web sections. The interlocks of the sheet-pile sections are 
shaped like a thumb-and-finger or ball-and-socket joint for watertight connections. 
Figure 4.3a is a schematic diagram of the thumb-and-finger type of interlocking for 
straight web sections. The ball-and-socket type of interlocking for Z section piles is 
shown in Figure 4.3b. Figure 4.4 shows some sheet piles at a construction site. Figure 
4.5 shows a small enclosure with steel sheet piles for an excavation work. Table 4.1 
lists the properties of the steel sheet-pile sections produced by Hammer & Steel, Inc. 
of Hazelwood, Missouri. The allowable design flexural stress for the steel sheet piles 
is as follows: 
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Figure 4.3 (a) Thumb-and-finger type sheet-pile connection; (b) ball-and-socket type 
sheet-pile connection 
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Figure 4.4 Some steel sheet piles at a construction site (Courtesy of N. Sivakugan, 
James Cook University, Australia) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 A small enclosure with steel sheet piles for an excavation work (Courtesy 

of N. Sivakugan, James Cook University, Australia) 
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Table 4.1 Properties of Some Sheet-Pile Sections Production by Bethlehem Steel 
Corporation 
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4.2 Construction Methods 
  Sheet-pile walls may be divided into two basic categories:  
(a) cantilever and 
 (b) anchored. 
  
  In the construction of sheet-pile walls, the sheet pile may be driven into the ground 
and then the backfill placed on the land side, or the sheet pile may first be driven into 
the ground and the soil in front of the sheet pile dredged. In either case, the soil used 
for backfill behind the sheet-pile wall is usually granular. The soil below the dredge 
line may be sandy or clayey. The surface of soil on the water side is referred to as the 
mud line or dredge line. 
Thus, construction methods generally can be divided into two categories (Tsinker, 
1983): 
1. Backfilled structure 
2. Dredged structure 
  The sequence of construction for a backfilled structure is as follows (see Figure 
4.6): 
Step 1. Dredge the in situ soil in front and back of the proposed structure. 
Step 2. Drive the sheet piles. 
Step 3. Backfill up to the level of the anchor, and place the anchor system. 
Step 4. Backfill up to the top of the wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Sequence of construction for a backfilled structure 
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For a cantilever type of wall, only Steps 1, 2, and 4 apply. The sequence of 
construction for a dredged structure is as follows (see Figure 4.7): 
Step 1. Drive the sheet piles. 
Step 2. Backfill up to the anchor level, and place the anchor system. 
Step 3. Backfill up to the top of the wall. 
Step 4. Dredge the front side of the wall. 
With cantilever sheet-pile walls, Step 2 is not required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Sequence of construction for a dredged structure 
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4.3 Cantilever Sheet-Pile Walls 
  Cantilever sheet-pile walls are usually recommended for walls of moderate height—
about 6 m or less, measured above the dredge line. In such walls, the sheet piles act 
as a wide cantilever beam above the dredge line. The basic principles for estimating 
net lateral pressure distribution on a cantilever sheet-pile wall can be explained with 
the aid of Figure 4.8. The figure shows the nature of lateral yielding of a cantilever 
wall penetrating sand layer below the dredge line. The wall rotates about point O 
(Figure 4.8a). Because the hydrostatic pressures at any depth from both sides of the 
wall will cancel each other, we consider only the effective lateral soil pressures. In 
zone A, the lateral pressure is just the active pressure from the land side. In zone B, 
because of the nature of yielding of the wall, there will be active pressure from the 
land side and passive pressure from the water side. The condition is reversed in zone 
C—that is, below the point of rotation, O. The net actual pressure distribution on the 
wall is like that shown in Figure 4.8b. However, for design purposes, Figure 4.8c 
shows a simplified version. 
  Sections 4.4 through 4.7 present the mathematical formulation of the analysis of 
cantilever sheet-pile walls. Note that, in some waterfront structures, the water level 
may fluctuate as the result of tidal effects. Care should be taken in determining the 
water level that will affect the net pressure diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Cantilever sheet pile penetrating sand 
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4.4 Cantilever Sheet Piling Penetrating Sandy Soils 
  To develop the relationships for the proper depth of embedment of sheet piles driven 
into a granular soil, examine Figure 4.9a. The soil retained by the sheet piling above 
the dredge line also is sand. The water table is at a depth  L1 below the top of the wall. 
Let the effective angle of friction of the sand be ' . The intensity of the active 
pressure at a depth z = L1 is 
 
ଵᇱߪ =  ௔                     (4.1)ܭଵܮߛ
 
where 
Ka = Rankine active pressure coefficient = ݊ܽݐଶ(45 − ᇲ

ଶ
) 

   = unit weight of soil above the water table 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.9 Cantilever sheet pile penetrating sand: (a) variation of net pressure 
diagram; (b) variation of moment 

 
  Similarly, the active pressure at a depth z = L1 + L2  (i.e., at the level of the dredge 
line) is 
 

(4.2) 
where '  = effective unit weight of soil =sat - w . 
  Note that, at the level of the dredge line, the hydrostatic pressures from both sides of 
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the wall are the same magnitude and cancel each other. 
  To determine the net lateral pressure below the dredge line up to the point of 
rotation, O, as shown in Figure 4.8a, an engineer has to consider the passive pressure 
acting from the left side (the water side) toward the right side (the land side) of the 
wall and also the active pressure acting from the right side toward the left side of the 
wall. For such cases, ignoring the hydrostatic pressure from both sides of the wall, the 
active pressure at depth z is 
 
                                                                    (4.3) 
 
Also, the passive pressure at depth z is 
 

 (4.4) 
 
where Kp = Rankine passive pressure coefficient = ݊ܽݐଶ(45 + ᇲ

ଶ
) 

Combining Eqs. (4.3) and (4.4) yields the net lateral pressure, namely, 
                                (4.5) 
 
 
where L = L1 + L2. The net pressure, '  equals zero at a depth L3 below the dredge 
line, so 
 
 
or 
 
 

  (4.6) 
 
 
Equation (4.6) indicates that the slope of the net pressure distribution line DEF is 1 
vertical to (Kp – Ka) ' horizontal, so, in the pressure diagram, 
 

  (4.7) 
 
At the bottom of the sheet pile, passive pressure, ' 

p , acts from the right toward the 
left side, and active pressure acts from the left toward the right side of the sheet pile, 
so, at z =  L + D, 
 
                               (4.8) 
 
At the same depth, 
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(4.9) 

 
Hence, the net lateral pressure at the bottom of the sheet pile is 
 
 

                           (4.10) 
 
Where 
 

                      (4.11) 
                                               (4.12) 

 
For the stability of the wall, the principles of statics can now be applied: 
                      horizontal forces per unit length of wall = 0 
 
and 
                  moment of the forces per unit length of wall about point B = 0 
For the summation of the horizontal forces, we have 
             Area of the pressure diagram ACDE - area of EFHB + area of FHBG = 0 
 
Or 
 

                                     (4.13) 
 
 
where P = area of the pressure diagram ACDE. 
     Summing the moment of all the forces about point B yields 
 
 

                                     (4.14) 
 
 
From Eq.(4.13) 
 
 

(4.15) 
 
 
Combining Eqs. (4.7), (4.10), (4.14), and (4.15) and simplifying them further, we 
obtain the following fourth-degree equation in terms of L4 : 
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                    (4.16) 
 
In this equation  
 
 

                    (4.17) 
 
 

                   (4.18) 
 
 

           (4.19) 
 
 
 

(4.20) 
 
 
 
 

Step-by-Step Procedure for Obtaining the Pressure Diagram 
Based on the preceding theory, a step-by-step procedure for obtaining the pressure 
diagram for a cantilever sheet-pile wall penetrating a granular soil is as follows: 

Step 1. Calculate Ka and Kp . 
Step 2. Calculate '

1 [Eq. (4.1)] and '
2  [Eq. (4.2)]. (Note: L1 and L2 will 

be given.) 
Step 3. Calculate L3 [Eq. (4.6)]. 
Step 4. Calculate P. 
Step 5. Calculate z (i.e., the center of pressure for the area ACDE) by 

taking the moment about E. 
Step 6. Calculate '

5  [Eq. (4.11)]. 
Step 7. Calculate A1 , A2 , A3 , and A4 [Eqs. (4.17) through (4.20)]. 
Step 8. Solve Eq. (4.16) by trial and error to determine L4 . 
Step 9. Calculate '

4  [Eq. (4.10)]. 
Step 10. Calculate '

3  [Eq. (4.7)]. 
Step 11. Obtain L5 from Eq. (4.15). 
Step 12. Draw a pressure distribution diagram like the one shown in 

Figure 4.9a. 
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Step 13. Obtain the theoretical depth [see Eq. (4.12)] of penetration as  
L3 + L4.The actual depth of penetration is increased by about 20 
to 30%. 

 
  Note that some designers prefer to use a factor of safety on the passive earth 
pressure coefficient at the beginning. In that case, in Step 1, 
 
 
 
 
where FS = factor of safety (usually between 1.5 and 2). 
   
  For this type of analysis, follow Steps 1 through 12 with the value of Ka= 
ଶ(45݊ܽݐ − ᇲ

ଶ
) and Kp(design) (instead of Kp). The actual depth of penetration can now 

be determined by adding L3 , obtained from Step 3, and L4 , obtained from Step 8. 
 
Calculation of Maximum Bending Moment 
 The nature of the variation of the moment diagram for a cantilever sheet-pile wall is 
shown in Figure 4.9b. The maximum moment will occur between points E and F'. 
Obtaining the maximum moment (Mmax) per unit length of the wall requires 
determining the point of zero shear. For a new axis z' (with origin at point E) for zero 
shear, 
 
 
 
Or 
 
 
                          (4.21) 
 
  Once the point of zero shear force is determined (point F'' in Figure 4.9a), the 
magnitude of the maximum moment can be obtained as 
 
n             (4.22) 
 
 
The necessary profile of the sheet piling is then sized according to the allowable 
flexural stress of the sheet pile material, or 
 
 
     (4.23) 
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where 
S = section modulus of the sheet pile required per unit length of the structure 
all = allowable flexural stress of the sheet pile 
 
Example 4.1 
  Figure 4.10 shows a cantilever sheet-pile wall penetrating a granular soil. Here, 
L1= 2 m, L2= 3 m,  = 15.9 kN/m3,  sat = 19.33 kN/m3, and '= 32°. 
   a. What is the theoretical depth of embedment, D?  
   b. For a 30% increase in D, what should be the total length of the sheet piles? 
   c. What should be the minimum section modulus of the sheet piles?                            

Use all=172 MN/m2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Cantilever sheet-pile wall 
 
Part a 
Using Figure 4.9a for the pressure distribution diagram, one can now 
prepare the following table for a step-by-step calculation. 
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4.5 Cantilever Sheet Piling Penetrating Clay 
  At times, cantilever sheet piles must be driven into a clay layer possessing an 
undrained cohesion (=0). The net pressure diagram will be somewhat different from 
that shown in Figure 4.9a. Figure 4.13 shows a cantilever sheet-pile wall driven into 
clay with a backfill of granular soil above the level of the dredge line. The water table 
is at a depth L1 below the top of the wall. As before, Eqs. (4.1) and (4.2) give the 
intensity of the net pressures '

1 and '
2  , and the diagram for pressure distribution 

above the level of the dredge line can be drawn. The diagram for net pressure 
distribution below the dredge line can now be determined as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Cantilever sheet pile penetrating clay 
 
 At any depth greater than L1 + L2 , for =0, the Rankine active earth-pressure 
coefficient Ka = 1. Similarly, for =0, the Rankine passive earth-pressure coefficient 
Kp=1. Thus, above the point of rotation (point O in Figure 4.8a), the active pressure, 
from right to left is 
                           (4.24) 
 
Similarly, the passive pressure from left to right may be expressed as 
           (4.25) 
 
Thus, the net pressure is 
 
 
 
         (4.26) 
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At the bottom of the sheet pile, the passive pressure from right to left is 
 (4.27) 

 
Similarly, the active pressure from left to right is 
        (4.28) 
 
Hence, the net pressure is 
             (4.29) 
 
For equilibrium analysis, FH = 0; that is, the area of the pressure diagram ACDE 
minus the area of EFIB plus the area of GIH = 0, or 
 
 
where P1 = area of the pressure diagram ACDE. 
    Simplifying the preceding equation produces 
 
 
           (4.30) 
 
Now, taking the moment about point B (MB =0) yields 
 
 
               (4.31) 
 
where ݖଵഥ  = distance of the center of pressure of the pressure diagram ACDE, 
measured from the level of the dredge line.  
   Combining Eqs. (4.30) and (4.31) yields 
 
 
              (4.32) 
 
Equation (4.32) may be solved to obtain D, the theoretical depth of penetration of the 
clay layer by the sheet pile. 
 
Step-by-Step Procedure for Obtaining the Pressure Diagram 
 
Step 1. Calculate Ka for the granular soil (backfill). 
Step 2. Obtain '

1 and '
2  . [See Eqs. (4.1) and (4.2).] 

Step 3. Calculate P1 and z1 . 
Step 4. Use Eq. (4.32) to obtain the theoretical value of D. 
Step 5. Using Eq. (4.30), calculate L4. 
Step 6. Calculate 6 and 7 . [See Eqs. (4.26) and (4.29).] 
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Step 7. Draw the pressure distribution diagram as shown in Figure 4.13. 
Step 8. The actual depth of penetration is 
           
 
Maximum Bending Moment 
  According to Figure 4.13, the maximum moment (zero shear) will be between L1 + 
L2 z  L1 + L2 + L3 . Using a new coordinate system z9 (with z' = 0 at the dredge 
line) for zero shear gives 
                              
 
or 
                           
        (4.33) 
 
 
The magnitude of the maximum moment may now be obtained: 
 
    

 (4.34) 
 
Knowing the maximum bending moment, we determine the section modulus of the 
sheet-pile section from Eq. (4.23). 
 
Example 4.2: 
  In Figure 4.14, for the sheet-pile wall, determine 
a. The theoretical and actual depth of penetration. Use Dactual = 1.5Dtheory . 
b. The minimum size of sheet-pile section necessary. Use all = 172.5 MN/m2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.14 Cantilever sheet pile penetrating into saturated clay 
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4.6 Anchored Sheet-Pile Walls 
  When the height of the backfill material behind a cantilever sheet-pile wall exceeds 
about 6 m, tying the wall near the top to anchor plates, anchor walls, or anchor piles 
becomes more economical. This type of construction is referred to as anchored 
sheet-pile wall or an anchored bulkhead. Anchors minimize the depth of penetration 
required by the sheet piles and also reduce the cross-sectional area and weight of the 
sheet piles needed for construction. However, the tie rods and anchors must be 
carefully designed. 
  The two basic methods of designing anchored sheet-pile walls are 
 (a) the free earth support method and  
 (b) the fixed earth support method.  
  Figure 4.17 shows the assumed nature of deflection of the sheet piles for the two 
methods.  
  The free earth support method involves a minimum penetration depth. Below the 
dredge line, no pivot point exists for the static system. The nature of the variation of 
the bending moment with depth for both methods is also shown in Figure 4.17. Note 
that    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17 Nature of variation of deflection and moment for anchored sheet piles: 
(a) free earth support method (b) fixed earth support method 



Sheet Pile Walls                                    

  
 

4.7 Free Earth Support Method for Penetration of Sandy Soil 
  Figure 4.18 shows an anchor sheet-pile wall with a granular soil backfill; the wall 
has been driven into a granular soil. The tie rod connecting the sheet pile and the 
anchor is located at a depth l1 below the top of the sheet-pile wall. 
  The diagram of the net pressure distribution above the dredge line is similar to that 
shown in Figure 4.9. At depth z = L1 , '1= L1Ka , and at z = L1 + L2 , '2= (L1 + 
'L2)Ka . Below the dredge line, the net pressure will be zero at z + L1 + L2 + L3. The 
relation for L3 is given by Eq. (4.6), or 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18 Anchored sheet-pile wall penetrating sand 
 
At z = L1 + L2 + L3 + L4 , the net pressure is given by 
 
        (4.35) 
 
  Note that the slope of the line DEF is 1 vertical to '(Kp - Ka) horizontal. For 
equilibrium of the sheet pile,  horizontal forces = 0, and  moment about O'= 0. 
(Note: Point O' is located at the level of the tie rod.) 
  Summing the forces in the horizontal direction (per unit length of the wall) gives 
      Area of the pressure diagram ACDE - area of EBF - F = 0 
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where F=5 tension in the tie rod/unit length of the wall, or  
 
 
or  
 
         (4.36) 
 
 
where P = area of the pressure diagram ACDE.  
   Now, taking the moment about point O' gives 

 
 

Or 
 

               (4.37) 
 
 
Equation (4.37) may be solved by trial and error to determine the theoretical depth, 
L4: 

Dtheoretical = L3 + L4 
 

The theoretical depth is increased by about 30 to 40% for actual construction, or 
Dactual = 1.3 to 1.4 Dtheoretical            (4.38) 

 
  The step-by-step procedure in Section 4.4 indicated that a factor of safety can be 
applied to Kp at the beginning [i.e., Kp(designd) = Kp/FS]. If that is done, there is no need 
to increase the theoretical depth by 30 to 40%. This approach is often more 
conservative. 
  The maximum theoretical moment to which the sheet pile will be subjected occurs 
at a depth between z = L1 and z = L1 + L2 . The depth z for zero shear and hence 
maximum moment may be evaluated from 
               (4.39) 
 
  Once the value of z is determined, the magnitude of the maximum moment is easily 
obtained. 
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4.8 Moment Reduction for Anchored Sheet-Pile 
  Walls Penetrating into Sand Sheet piles are flexible, and hence sheet-pile walls yield 
(i.e., become displaced laterally), which redistributes the lateral earth pressure. This 
change tends to reduce the maximum bending moment, Mmax , as calculated by the 
procedure outlined in Section 4.7. For that reason, Rowe (1952, 1957) suggested a 
procedure for reducing the maximum design moment on the sheet-pile walls obtained 
from the free earth support method. This section discusses the procedure of moment 
reduction for sheet piles penetrating into sand. 
  In Figure 4.25, which is valid for the case of a sheet pile penetrating sand, the 
following notation is used: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.25 Plot of log  against Md /Mmax for sheet-pile walls penetrating sand (after, 

P. W. (1952).  
1. H' = 5 total height of pile driven (i.e., L1 + L2 + Dactual) 
 
2.            (4.40) 
 
 
where 
H' is in meters 
E = modulus of elasticity of the pile material (MN/ m2) 
I = moment of inertia of the pile section per meter of the wall (m4/m of wall) 
3. Md = design moment 
4. Mmax = maximum theoretical moment 
 
The procedure for the use of the moment reduction diagram (see Figure 4.25) is 
as follows: 
Step 1. Choose a sheet-pile section (e.g., from among those given in Table 4.1). 
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Step 2. Find the modulus S of the selected section (Step 1) per unit length of the wall. 
Step 3. Determine the moment of inertia of the section (Step 1) per unit length of the 

wall. 
Step 4. Obtain H' and calculate r [see Eq. (4.40)]. 
Step 5. Find log r. 
Step 6. Find the moment capacity of the pile section chosen in Step 1 as Md =allS. 
Step 7. Determine Md/Mmax . Note that Mmax is the maximum theoretical moment 

determined before. 
Step 8. Plot log r (Step 5) and Md/Mmax in Figure 4.25. 
Step 9. Repeat Steps 1 through 8 for several sections. The points that fall above the 

curve (in loose sand or dense sand, as the case may be) are safe sections. 
 
  The points that fall below the curve are unsafe sections. The cheapest section may 
now be chosen from those points which fall above the proper curve. Note that the 
section chosen will have an Md , Mmax. 
 
Example 4.3: 
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Example 4.4: 
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4.9 Free Earth Support Method for Penetration of Clay 
  Figure 4.32 shows an anchored sheet-pile wall penetrating a clay soil and with a 
granular soil backfill. The diagram of pressure distribution above the dredge line is 
similar to that shown in Figure 4.9. From Eq. (4.26), the net pressure distribution 
below the dredge line (from z = L1 + L2 to z = L1 + L+ D) is 
 
 
 
For static equilibrium, the sum of the forces in the horizontal direction is 
 
          (4.41) 
 
where 
P1 = area of the pressure diagram ACD 
F = anchor force per unit length of the sheet-pile wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32 Anchored sheet-pile wall penetrating clay 
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Again, taking the moment about O' produces 
 
 
 
 
Simplification yields 
 
              (4.42) 
 
Equation (4.42) gives the theoretical depth of penetration, D. 
 
As in Section 4.7, the maximum moment in this case occurs at a depth L1 , z , L1 + L2. 
The depth of zero shear (and thus the maximum moment) may be determined from 
Eq. (4.39). 
  A moment reduction technique similar to that in Section 14.11 for anchored sheet 
piles penetrating into clay has also been developed by Rowe (1952, 1957). This 
technique is presented in Figure 4.33, in which the following notation is used: 
 
1. The stability number is 
 
 
                 (4.43) 
 
  where c = undrained cohesion (=0). For the definition of , ', L1 , and L2 , see    
Figure 4.32. 
 
2. The nondimensional wall height is 
 
          (4.44) 
 
 
 
3. The flexibility number is  [see Eq. (4.40)] 
4. Md = design moment 
   Mmax = maximum theoretical moment 
 
The procedure for moment reduction, using Figure 4.33, is as follows: 
Step 1. Obtain H' = L1 + L2 + Dactual . 
Step 2. Determine  = (L1+ L2)/H' . 
Step 3. Determine Sn [from Eq. (4.43)]. 
Step 4. For the magnitudes of  and Sn obtained in Steps 2 and 3, determine Md /Mmax 

for various values of log  from Figure 4.33, and plot Md /Mmax against log. 
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Step 5. Follow Steps 1 through 9 as outlined for the case of moment reduction of 
sheet-pile walls penetrating granular soil. (See Section 4.8.) 

 

 
 
Figure 4.33 Plot of MdyMmax against stability number for sheetpile wall penetrating 

clay [after Rowe, (1957]. 
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Example 4.5: 
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4.10 Anchors 
  Sections 4.7 through 4.9 gave an analysis of anchored sheet-pile walls and discussed 
how to obtain the force F per unit length of the sheet-pile wall that has to be sustained 
by the anchors. The current section covers in more detail the various types of anchor 
generally used and the procedures for evaluating their ultimate holding capacities. 
 
The general types of anchor used in sheet-pile walls are as follows: 
1. Anchor plates and beams (deadman) 
2. Tie backs 
3. Vertical anchor piles 
4. Anchor beams supported by batter (compression and tension) piles 
 
Anchor plates and beams are generally made of cast concrete blocks. (See Figure 
4.36a.) The anchors are attached to the sheet pile by tie rods. A wale is placed at the 
front or back face of a sheet pile for the purpose of conveniently attaching the tie rod 
to the wall. To protect the tie rod from corrosion, it is generally coated with paint or 
asphaltic materials. 
  In the construction of tiebacks, bars or cables are placed in predrilled holes (see 
Figure 4.36b) with concrete grout (cables are commonly high-strength, prestressed 
steel tendons). Figures 4.36c and 4.36d show a vertical anchor pile and an anchor 
beam with batter piles. 
 
Placement of Anchors 
  The resistance offered by anchor plates and beams is derived primarily from the 
passive force of the soil located in front of them. Figure 4.36a, in which AB is the 
sheet-pile wall, shows the best location for maximum efficiency of an anchor plate. If 
the anchor is placed inside wedge ABC, which is the Rankine active zone, it would 
not provide any resistance to failure. Alternatively, the anchor could be placed in 
zone CFEH. Note that line DFG is the slip line for the Rankine passive pressure. If 
part of the passive wedge is located inside the active wedge ABC, full passive 
resistance of the anchor cannot be realized upon failure of the sheet-pile wall. 
However, if the anchor is placed in zone ICH, the Rankine passive zone in front of 
the anchor slab or plate is located completely outside the Rankine active zone ABC. 
In this case, full passive resistance from the anchor can be realized. 
  Figures 4.36b, 4.36c, and 4.36d also show the proper locations for the placement of 
tiebacks, vertical anchor piles, and anchor beams supported by batter piles. 
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Figure 4.36 Various types of anchoring for sheet-pile walls: (a) anchor plate or beam; 

(b) tieback; (c) vertical anchor pile; (d) anchor beam with batter piles 
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Capacity of Deadman (After Teng, 1969) 
  A series of deadmen (anchor beams, anchor blocks or anchor plates) are normally 
placed at intervals parallel to the sheet pile walls. These anchor blocks may be 
constructed near the ground surface or at great depths, and in short lengths or in one 
continuous beam. The holding capacity of these anchorages is discussed below. 
 
Continuous Anchor Beam Near Ground Surface (Teng, 1969) 
  If the length of the beam is considerably greater than its depth, it is called^ a 
continuous deadman. Fig. 4.37(a) shows a deadman. If the depth to the top of the 
deadman, h, is less than about onethird to one-half of H (where H is depth to the 
bottom of the deadman), the capacity may be calculated by assuming that the top of 
the deadman extends to the ground surface. The ultimate capacity of a deadman may 
be obtained from (per unit length) 
 
For granular soil (c = 0) 
 
            (4.45) 
 
 
         (4.46) 
 
For clay soil ( = 0) 
 
 
              (4.47) 
 
where qu = unconfmed compressive strength of soil, 
            = effective unit weight of soil, and 
   Kp, Ka = Rankine's active and passive earth pressure coefficients. 
     
  It may be noted here that the active earth pressure is assumed to be zero at a depth = 
2c/y which is the depth of the tension cracks. It is likely that the magnitude and 
distribution of earth pressure may change slowly with time. For lack of sufficient data 
on this, the design of deadmen in cohesive soils should be made with a conservative 
factor of safety. 
 
Short Deadman Near Ground Surface in Granular Soil (Fig. 4.37b) 
  If the length of a deadman is shorter than 5h (h = height of deadman) there will be 
an end effect with regards to the holding capacity of the anchor. The equation 
suggested by Teng for computing the ultimate tensile capacity Tu is 
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Figure 4.37 Capacity of deadmen: (a) continuous deadmen near ground surface (ℎത/H 

< 1/3 ~ 1/2); (b) short deadmen near ground surface; (c) deadmen at great depth 
below ground surface (after Teng, 1969) 

 
 
 
            (4.48) 
 
where 
h= height of deadman 
ℎത= depth to the top of deadman 
L= length of deadman 
H= depth to the bottom of the dead man from the ground surface 
Pp ,Pa = total passive and active earth pressures per unit length 
Ko= coefficient of earth pressures at-rest, taken equal to 0.4 
= effective unit weight of soil 
Kp, Ka= Rankine's coefficients of passive and active earth pressures 
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= angle of internal friction 
 
Anchor Capacity of Short Deadman in Cohesive Soil Near Ground Surface 
  In cohesive soils, the second term of Eq. (4.48) should be replaced by the cohesive 
resistance  
௨ܶ = ൫ܮ ௣ܲ − ௔ܲ൯ +  ଶ      (4.49)ܪ௨ݍ

 
where qu = unconfmed compressive strength of soil. 
 
Deadman at Great Depth 
  The ultimate capacity of a deadman at great depth below the ground surface as 
shown in Fig. (4.37c) is approximately equal to the bearing capacity of a footing 
whose base is located at a depth ( ℎ	ഥ+ h/2), corresponding to the mid height of the 
deadman (Terzaghi, 1943). 
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5.1 Introduction  
  Sometimes construction work requires ground excavations with vertical or near-
vertical faces—for example, basements of buildings in developed areas or 
underground transportation facilities at shallow depths below the ground surface (a 
cut-and-cover type of construction). The vertical faces of the cuts need to be 
protected by temporary bracing systems to avoid failure that may be accompanied by 
considerable settlement or by bearing capacity failure of nearby foundations. 
  Figure 5.1 shows two types of braced cut commonly used in construction work. One 
type uses the soldier beam (Figure 5.1a), which is driven into the ground before 
excavation and is a vertical steel or timber beam. Laggings, which are horizontal 
timber planks, are placed between soldier beams as the excavation proceeds. When 
the excavation reaches the desired depth, wales and struts (horizontal steel beams) 
are installed. The struts are compression members. Figure 5.1b shows another type of 
braced excavation. In this case, interlocking sheet piles are driven into the soil before 
excavation. Wales and struts are inserted immediately after excavation reaches the 
appropriate depth. 
  Figure 5.2 shows the braced-cut construction used for the Chicago subway in 1940. 
Timber lagging, timber struts, and steel wales were used. Figure 5.3 shows a braced 
cut made during the construction of the Washington, DC, metro in 1974. In this cut, 
timber lagging, steel H-soldier piles, steel wales, and pipe struts were used. 
  To design braced excavations (i.e., to select wales, struts, sheet piles, and soldier  
beams), an engineer must estimate the lateral earth pressure to which the braced cuts 
will be subjected. The theoretical aspects of the lateral earth pressure on a braced cut 
is discussed in Section 5.2. The total active force per unit length of the wall (Pa) can 
be calculated by using the general wedge theory. However, that analysis will not 
provide the relationships required for estimating the variation of lateral pressure with 
depth, which is a function of several factors, such as the type of soil, the experience 
of the construction crew, the type of construction equipment used, and so forth. For 
that reason, empirical pressure envelopes developed from field observations are used 
for the design of braced cuts. This procedure is discussed in the following sections. 
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Figure 5.1 Types of braced cut: (a) use of soldier beams; (b) use of sheet piles 
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Figure 5.2 Braced cut in Chicago Subway construction, January 1940 (Courtesy of 

Ralph B. Peck) 
  

  
Figure 5.3 Braced cut in the construction of Washington, D.C. Metro, May 

1974 (Courtesy of Ralph B. Peck) 
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5.2 Pressure Envelope for Braced-Cut Design 
  As mentioned in Section 5.1, the lateral earth pressure in a braced cut is 
dependent on the type of soil, construction method, and type of equipment 
used. The lateral earth pressure changes from place to place. Each strut 
should also be designed for the maximum load to which it may be 
subjected. Therefore, the braced cuts should be designed using apparent-
pressure diagrams that are envelopes of all the pressure diagrams 
determined from measured strut loads in the field. Figure 5.4 shows the 
method for obtaining the apparent-pressure diagram at a section from strut 
loads. In this figure, let P1 , P2 , P3 , P4 , …. be the measured strut loads. 
The apparent horizontal pressure can then be calculated as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 Procedure for calculating apparent-pressure diagram from measured strut 

loads 
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where 
1 , 2 , 3 , 4 = apparent pressures 
S= center-to-center spacing of the struts 
  Using the procedure just described for strut loads observed from the Berlin subway 
cut, Munich subway cut, and New York subway cut, Peck (1969) provided the 
envelope of apparent-lateral-pressure diagrams for design of cuts in sand. This 
envelope is illustrated in Figure 5.5, in which 
 
       (5.1) 
 
where 
 = unit weight 
H = height of the cut 
Ka = Rankine active pressure coefficient = (tan2(45+'/2) 
' = effective friction angle of sand 
 
Cuts in Clay 
  In a similar manner, Peck (1969) also provided the envelopes of apparent-lateral- 
pressure diagrams for cuts in soft to medium clay and in stiff clay. The pressure  
envelope for soft to medium clay is shown in Figure 5.6 and is applicable to the 
condition 
 

 
 

where c = undrained cohesion  =0. 
The pressure, a , is the larger of 
 
 
 
         (5.2) 
 
 
 
 
where  = unit weight of clay. 
  The pressure envelope for cuts in stiff clay is shown in Figure 5.7, in which 
 
            (5.3) 
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is applicable to the condition H/c  4. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  When using the pressure envelopes just described, keep the following points in 
mind: 

1. They apply to excavations having depths greater than about 6m(20ft). 
2. They are based on the assumption that the water table is below the bottom of 

the cut. 
3. Sand is assumed to be drained with zero pore water pressure. 
4. Clay is assumed to be undrained and pore water pressure is not considered. 
 

5.3 Pressure Envelope for Cuts in Layered Soil 
  Sometimes, layers of both sand and clay are encountered when a braced cut is being 
constructed. In this case, Peck (1943) proposed that an equivalent value of cohesion 
( =0) should be determined according to the formula (see Figure 5.8a). 

 
       (5.4) 
 
 
where 
H = total height of the cut 
s = unit weight of sand 
Hs= height of the sand layer 
Ks= a lateral earth pressure coefficient for the sand layer (1) 
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's=5 effective angle of friction of sand 
qu= unconfined compression strength of clay 
n' = a coefficient of progressive failure (ranging from 0.5 to 1.0; average value 

0.75) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Layered soils in braced cuts 
 

  The average unit weight of the layers may be expressed as 
 
 
           (5.5) 
 
where c = saturated unit weight of clay layer. 
 
  Once the average values of cohesion and unit weight are determined, the pressure 
envelopes in clay can be used to design the cuts. 
  Similarly, when several clay layers are encountered in the cut (Figure 5.8b), the 
average undrained cohesion becomes 
 
                  (5.6) 
 
where 
c1 , c2 , …, cn = undrained cohesion in layers 1, 2, … , n 
H1 , H2 , … , Hn = thickness of layers 1, 2, … , n 
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The average unit weight is now 
 
        (5.7) 
 
5.4 Design of Various Components of a Braced Cut Struts 
  In construction work, struts should have a minimum vertical spacing of about 2.75 
m (9 ft) or more. Struts are horizontal columns subject to bending. The load-carrying 
capacity of columns depends on their slenderness ratio, which can be reduced by  
providing vertical and horizontal supports at intermediate points. For wide cuts, 
splicing the struts may be necessary. For braced cuts in clayey soils, the depth of the 
first strut below the ground surface should be less than the depth of tensile crack, zc. 
From Eq. (5.7), 
 

 
  A simplified conservative procedure may be used to determine the strut loads. 
Although this procedure will vary, depending on the engineers involved in the 
project, the following is a step-by-step outline of the general methodology (see Figure 
5.9): 

Step 1. Draw the pressure envelope for the braced cut. (See Figures 5.5, 5.6, and 
5.7.) Also, show the proposed strut levels. Figure 5.9a shows a pressure 
envelope  for a sandy soil; however, it could also be for a clay. The strut 
levels are marked A, B, C, and D. The sheet piles (or soldier beams) are 
assumed to be hinged at the strut levels, except for the top and bottom 
ones. In Figure 5.9a, the hinges are at the level of struts B and C. (Many 
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designers also assume the sheet piles or soldier beams to be hinged at all 
strut levels except for the top.) 

 
Step 2. Determine the reactions for the two simple cantilever beams (top and 

bottom) and all the simple beams between. In Figure 5.9b, these  
reactions are A, B1 , B2 , C1 , C2 , and D. 

 
Step 3. The strut loads in the figure may be calculated via the formulas 
 
 

 
 
 
           (5.8) 
 
 
 
 
 
where 
PA , PB , PC , PD = loads to be taken by the individual struts at levels A,B, C, and D, 

respectively 
A, B1 , B2 , C1 , C2 , D = reactions calculated in Step 2 (note the unit: force/unit length 

of the braced cut) 
s = horizontal spacing of the struts (see plan in Figure 5.9a) 
 

Step 4. Knowing the strut loads at each level and the intermediate bracing 
conditions allows selection of the proper sections from the steel manual 
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Figure 5.9 Determination of strut loads: (a) section and plan of the cut; (b) method 
for determining strut loads 
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Sheet Piles 
  The following steps are involved in designing the sheet piles: 
 
Step 1. For each of the sections shown in Figure 15.11b, determine the maximum 

bending moment. 
Step 2. Determine the maximum value of the maximum bending moments (Mmax) 

obtained in Step 1. Note that the unit of this moment will be, for example,   
kN-m/m length of the wall. 

Step 3. Obtain the required section modulus of the sheet piles, namely, 
 
 
           (5.9) 
 
where all = allowable flexural stress of the sheet-pile material. 
 
Step 4. Choose a sheet pile having a section modulus greater than or equal to the 

required section modulus from a table such as Table 4.1. 
 
 
Wales 
  Step1. Wales may be treated as continuous horizontal members if they are spliced 

properly. Conservatively, they may also be treated as though they are pinned 
at the struts. For the section shown in Figure 5.9a, the maximum moments for 
the wales (assuming that they are pinned at the struts) are, 

 

 
 
where A, B1 , B2 , C1 , C2 , and D are the reactions under the struts per unit length of 
the wall (see Step 2 of strut design). 
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Step 2. Determine the section modulus of the wales: 
 
 
         
 
 
  The wales are sometimes fastened to the sheet piles at points that satisfy the lateral 
support requirements. 
 
Example 5.1: 
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 Introduction 
An exposed ground surface that stands at an angle with the horizontal is called an 

unrestrained slope. The slope can be natural or constructed. If the ground surface  
is not horizontal, a component of gravity will cause the soil to move downward, as 
shown in Figure 6.1. If the component of gravity is large enough, slope failure can 
occur; that is, the soil mass in zone abcdea can slide downward. The driving force 

overcomes the resistance from the shear strength of the soil along the rupture surface. 
 
In many cases, civil engineers are expected to make calculations to check the safety 
of natural slopes, slopes of excavations, and compacted embankments. This process, 
called slope stability analysis, involves determining and comparing the shear stress 
developed along the most likely rupture surface with the shear strength of the soil. 
 
The stability analysis of a slope is not an easy task. Evaluating variables such as the 
soil stratification and its in-place shear strength parameters may prove to be a 
formidable task. Seepage through the slope and the choice of a potential slip surface 
add to the complexity of the problem. This chapter explains the basic principles 
involved in slope stability analysis. 
 
 
 

  
  
  
  
  
  

Figure 6.1 Slope failure 
 
6.1 Factor of Safety 
The task of the engineer charged with analyzing slope stability is to determine the 
factor of safety. Generally, the factor of safety is defined as 

  
                 (6-1) 
 
where 
FSs = factor of safety with respect to strength 
f = average shear strength of the soil 
d = average shear stress developed along the potential failure surface 
The shear strength of a soil consists of two components, cohesion and friction, and 
may be expressed as 
                         (6-2) 
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where 
c' = cohesion 
'= drained angle of friction 
'= effective normal stress on the potential failure surface. 
 
 In a similar manner, we can also write 
 
       (6-3) 
 
where c'

d and '
d are, respectively, the effective cohesion and the angle of friction 

that develop along the potential failure surface. Substituting Eqs. (6.2) and (6.3) into 
Eq. (6.1), we get 
 
       (6-4) 
 
 
 
Now we can introduce some other aspects of the factor of safety-that is, the factor of 
safety with respect to cohesion, FSc

'
 , and the factor of safety with respect to friction, 

FS
' They are defined as follows: 

 
         (6-5) 
 
and 
 
         (6-6_ 
 
 
 
 
 
 
 
When Eqs. (6.4), (6.5), and (6.6) are compared, we see that when FSc

' becomes equal 
to FS' , that is the factor of safety with respect to strength. Or, if 
 
 
      (6-7) 
 
 
we can write 
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When FSs is equal to 1, the slope is in a state of impending failure. Generally, a value 
of 1.5 for the factor of safety with respect to strength is acceptable for the design of a 
stable slope. 
 
6.2 Stability of Infinite Slopes 
 
In considering the problem of slope stability, we may start with the case of an infinite 
slope, as shown in Figure 6.2. An infinite slope is one in which His much greater than 
the slope height. The shear strength of the soil may be given by [Eq. (6.2)] 
 
        
 
 
  We will evaluate the factor of safety against a possible slope failure along a plane 
AB located at a depth H below the ground surface. The slope failure can occur by the 
movement of soil above the plane AB from right to left. 
  Let us consider a slope element, abcd, that has a unit length perpendicular to the 
plane of the section shown. The forces, F, that act on the faces ab and cd are 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 6.2 Analysis of infinite slope (without seepage)  
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equal and opposite and may be ignored. The effective weight of the soil element is 
(with pore water pressure equal to 0) 
 

(6-8) 
 

 

 
 
        (6-9) 
 
And 
 
        (6-10) 
 
 

 
 

(6-11) 
and 

 
(6-12) 

 

 
 
 
 
The value of the effective normal stress is given by Eq. (6.9). Substitution of Eq. 
(6.9) into Eq. (6.3) yields 
 
        (6-13) 
 
This  
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Or 
 
 
 
 
       (6-14) 
 
 
The factor of safety with respect to strength was defined in Eq. (6.7), from which 
 
 
 
 
Substituting the preceding relationships into Eq. (6.14), we obtain 
 
 
       (6-15) 
 
 

 
 
        (6-16) 
 
 
 
If there is seepage through the soil and the ground water level coincides with the 
ground surface as shown in Figure 6.3, the factor of safety with respect to strength 
can be obtained as 
 
        (6-17) 
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Figure 6.3Infinite slope with seepage 

 
 

6.3 Finite Slopes 
When the value of Hcr approaches the height of the slope, the slope is generally 
considered finite. When analyzing the stability of a finite slope in a homogeneous 
soil, for simplicity, we need to make an assumption about the general shape of the 
surface of potential failure. Although there is considerable evidence that slope 
failures usually occur on curved failure surfaces, Culmann (1875) approximated the 
surface of potential failure as a plane. The factor of safety, FSs, calculated using 
Culmann’s approximation gives fairly good results for near-vertical slopes only. 
 
After extensive investigation of slope failures in the 1920s, a Swedish geotechnical 
commission recommended that the actual surface of sliding may be approximated to 
be circularly cylindrical. Since that time, most conventional stability analyses of 
slopes have been made by assuming that the curve of potential sliding is an arc of a 
circle. However, in many circumstances (for example, zoned dams and foundations 
on weak strata), stability analysis using plane failure of sliding is more appropriate 
and yields excellent results. 
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Analysis of Finite Slope with Plane Failure Surface (Culmann’s Method) 
 
This analysis is based on the assumption that the failure of a slope occurs along a 
plane when the average shearing stress that tends to cause the slip is greater than the 
shear strength of the soil. Also, the most critical plane is the one that has a minimum 
ratio of the average shearing stress that tends to cause failure to the shear strength of 
soil. 
Figure 6.4 shows a slope of height H. The slope rises at an angle _ with the 
horizontal. AC is a trial failure plane. If we consider a unit length perpendicular to the 
section of the slope, the weight of the wedge ABC = W: 

 
 
     ((   (6-19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4 Finite slope analysis—Culmann’s method 
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