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1.1 Introduction

The terms caisson, pier, drilled shaft, and drilled pier are often used interchangeably
in foundation engineering; all refer to a cast-in-place pile generally having a
diameter of about 750 mm or more, with or without steel reinforcement and with or
without an enlarged bottom. Sometimes the diameter can be as small as 305 mm.

The use of drilled-shaft foundations has several advantages:
1. A single drilled shaft may be used instead of a group of piles and the pile cap.
2. Constructing drilled shafts in deposits of dense sand and gravel is easier than
Driving piles.
3. Drilled shafts may be constructed before grading operations are completed.
4. When piles are driven by a hammer, the ground vibration may cause damage to
nearby structures.
5. Piles driven into clay soils may produce ground heaving and cause previously
driven piles to move laterally.
. There is no hammer noise during the construction of drilled shafts.
. Because the base of a drilled shaft can be enlarged, it provides great resistance to
the uplifting load.
8. The surface over which the base of the drilled shaft is constructed can be visually
inspected.
9. The construction of drilled shafts generally utilizes mobile equipment.
10. Drilled shafts have high resistance to lateral loads.

< &

1.2 Types of Drilled Piers

Drilled piers may be described under four types. All four types are similar in
construction technique, but differ in their design assumptions and in the mechanism
of load transfer to the surrounding earth mass. These types are illustrated in Fig. 1.1
and as following:

1. Straight —shaft end-bearing piers develop their support from end-bearing on
strong soil, " hardpan" or rock. The overlying soil is assumed to contribute
nothing to the support of the load imposed on the pier|Fig.1.1(a)].

2. Straight-shaft side wall friction piers pass through overburden soils that are
assumed to carry none of the load, and penetrate far enough into an assign
bearing stratum to develop design load capacity by side wall friction between
the pier and bearing stratum to develop design load capacity by side wall
friction between the pier and bearing stratum|Fig. 1.1(b)].

3. Combination of straight shaft side wall friction and end bearing piers are of
the same construction as the two mention above, but with both side wall
friction and end bearing assigned a role in carrying the design load. When
carried into rock, this pier may be referred to as a socketed pier or a " drilled
pier with rock socket"[Fig. 1.1(c)].
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4. Belled or underreamed piers with a bottom bell or underream A
greater percentage of the imposed load on the pier top is assumed to be carried
by the base.
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1.3 Advantages and Disadvantages of Drilled Pier Foundations

Advantages

1. Pier of any length and size can be constructed at the site

2. Construction equipment is normally mobile and construction can proceed rapidly

3. Inspection of drilled holes is possible because of the larger diameter of the shafts

4. Very large loads can be carried by a single drilled pier foundation thus eliminating
the necessity of a pile cap

. The drilled pier is applicable to a wide variety of soil conditions

. Changes can be made in the design criteria during the progress of a job

. Ground vibration that is normally associated with driven piles is absent in drilled
pier construction

. Bearing capacity can be increased by underreaming the bottom (in non-caving
materials)

~ O\ D

o0

Disadvantages

1. Installation of drilled piers needs a careful supervision and quality control of all the
materials used in the construction

2. The method is cumbersome. It needs sufficient storage space for all the materials
used in the construction

3. The advantage of increased bearing capacity due to compaction in granular soil
that could be obtained in driven piles is not there in drilled pier construction

4. Construction of drilled piers at places where there is a heavy current of ground
water flow due to artesian pressure is very difficult

1.4 Construction Procedures

There are three major types of construction methods: the dry method, the casing
method,

and the wet method.

Dry Method of Construction

This method is employed in soils and rocks that are above the water table and that

will not cave in when the hole is drilled to its full depth. The sequence of

construction, shown in Figure 1.2, is as follows:

Step 1. The excavation is completed (and belled if desired), using proper drilling
tools, and the spoils from the hole are deposited nearby. (See Fig. 1.2a.)

Step 2. Concrete is then poured into the cylindrical hole. (See Fig. 1.2b.)

Step 3. 1f desired, a rebar cage is placed in the upper portion of the shaft. (See Fig.
1.2¢.)

Step 4. Concreting is then completed, and the drilled shaft will be as shown in Fig.
1.2d.
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Fig. 1.2 Dry method of construction: (a) initiating drilling; (b) starting concrete pour;
(c) placing rebar cage; (d) completed shaft (Based on O’Neill and Reese, 1999)
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Casing Method of Construction

This method is used in soils or rocks in which caving or excessive deformation is

likely to

occur when the borehole is excavated. The sequence of construction is shown in Fig.

1.3

and may be explained as follows:

Step 1. The excavation procedure is initiated as in the case of the dry method of
construction. (See Fig. 1.3a.)

Step 2. When the caving soil is encountered, bentonite slurry is introduced into the
borehole. (See Fig. 10.3b.) Drilling is continued until the excavation goes past
the caving soil and a layer of impermeable soil or rock is encountered.

Step 3. A casing is then introduced into the hole. (See Fig. 1.3¢.)

Step 4. The slurry is bailed out of the casing with a submersible pump. (See Fig.
1.3d.)

Step 5. A smaller drill that can pass through the casing is introduced into the hole,
and excavation continues. (See Fig. 1.3e.)

Step 6. If needed, the base of the excavated hole can then be enlarged, using an
underreamer. (See Fig. 1.3f)

Step 7. If reinforcing steel is needed, the rebar cage needs to extend the full length of
the excavation. Concrete is then poured into the excavation and the casing is
gradually pulled out. (See Fig. 1.3g.)

Step 8. Fig. 1.3h shows the completed drilled shaft.
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Fig. 1.3 Casing method of construction: (a) initiating drilling; (b) drilling with slurry;
(c) introducing casing; (d) casing is sealed and slurry is being removed from interior
of casing; (e) drilling below casing; (f) underreaming; (g) removing casing; (h)
completed shaft (Based on O’Neill and Reese, 1999)
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Wet Method of Construction

This method is sometimes referred to as the slurry displacement method. Slurry is

used to

keep the borehole open during the entire depth of excavation. (See Figure 1.4)

Following

are the steps involved in the wet method of construction:

Step 1. Excavation continues to full depth with slurry. (See Figure 1.4a.)

Step 2. If reinforcement is required, the rebar cage is placed in the slurry. (See Figure
1.4b.)

Step 3. Concrete that will displace the volume of slurry is then placed in the drill
hole. (See Figure 1.4c.)

Step 4. Figure 1.4d shows the completed drilled shaft.
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Figure 10.4 Slurry method of construction: (a) drilling to full depth with slurry; (b)
placing rebar cage; (c) placing concrete; (d) completed shaft (After O’Neill and
Reese, 1999)
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1.5 DESIGN CONSIDERATIONS

The process of the design of a drilled pier generally involves the following:

1 . The objectives of selecting drilled pier foundations for the project.

2. Analysis of loads coming on each pier foundation element.

3. A detailed soil investigation and determining the soil parameters for the design.

4. Preparation of plans and specifications which include the methods of design,
tolerable settlement, methods of construction of piers, etc.

5.The method of execution of the project.

In general the design of a drilled pier may be studied under the following
headings:

1. Allowable loads on the piers based on ultimate bearing capacity theories.

2. Allowable loads based on vertical movement of the piers.

3. Allowable loads based on lateral bearing capacity of the piers.

In addition to the above, the uplift capacity of piers with or without underreams
has to be evaluated. The following types of strata are considered.

1 . Piers embedded in homogeneous soils, sand or clay.

2. Piers in a layered system of soil.

3. Piers socketed in rocks.

It 1s better that the designer select shaft diameters that are multiples of 150 mm (6 in)
since these are the commonly available drilling tool diameters.

For the design of ordinary drilled shafts without casings, a minimum amount of
vertical steel reinforcement is always desirable. Minimum reinforcement is 1% of the
gross cross-sectional area of the shaft. For drilled shafts with nominal reinforcement,
most building codes suggest using a design concrete strength, fc , on the order of fc/4.
Thus, the minimum shaft diameter becomes

Qw Qw
Ds = | = 2.257 /—, 1-1
s \/ (30251 fe (-1)

where

D, = diameter of the shaft

fc =28-day concrete strength

0,, = working load of the drilled shaft

Ags = gross cross-sectional area of the shaft

If drilled shafts are likely to be subjected to tensile loads, reinforcement should be
continued
for the entire length of the shaft.
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Concrete Mix Design

The concrete mix design for drilled shafts is not much different from that for any
other concrete structure. When a reinforcing cage is used, consideration should be
given to the ability of the concrete to flow through the reinforcement. In most cases, a
concrete slump of about 15.0 mm (6 in.) is considered satisfactory. Also, the
maximum size of the aggregate should be limited to about 20 mm (0.75 in.).

1.6 Estimation of Load-Bearing Capacity - General

The load-transfer mechanism from drilled shafts to soil is similar to that of piles as
last described chapter. The ultimate load-bearing capacity of a drilled shaft
(Fig. 1.5) is

0= 0, +0, (1-2)
where
O,~ ultimate load
0, = ultimate load-carrying capacity at the base
Q, = frictional (skin) resistance
The equation for the ultimate base load is similar to that for shallow foundations:
Qp = Ap(c'N; + q'Ng + 0.3yD,Ny) (1-3)
Where
N¢, N4, N, = the bearing capacity factors
q'= vertical effective stress at the level of the bottom of the pier

D,= diameter of the base (see Fig. 1.5a and b)
A,= area of the base= 1/4D,

In most cases, the last term (containing N,) is neglected except for relatively short
drilled shafts, so

Qp = A,(c'NZ + q'Ny) (1-4)

The net load-carrying capacity at the base (that is, the gross load minus the weight of
the drilled shaft) may be approximated as

Qp(net) = Ap(C,Nék + q,Nc}k - q, = Ap[C,Nék + q,(Nc; —1)] (1-5)

The expression for the frictional, or skin, resistance, (J;, is similar to that for piles
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Qs = J," pfdz (1-6)
Where

p=shaft perimeter=nDj

f=unit frictional (or skin)resistance

QII’ Qﬁ

241 ('—-—'—‘—"ﬁ—'——

Figure 1.5 Ultimate bearing capacity of drilled shafts: (a) with bell and (b) straight
shaft

The following two sections describe the procedures for obtaining the ultimate and
allowable load-bearing capacities of drilled shafts in sand and clay.
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1.6 Drilled Shafts in Sand: L.oad-Bearing Capacity
Estimation of Q, ‘
For drilled shafts in sand, c=0 and , hence Eq. (1-5) simplifies to

Qp(net) = qu,(N(; - 1) (1-7)

Determination of Ng is always a problem for deep foundation, as in the case of piles.
Note, however, that all shafts are drilled, unlike the majority of piles, which are
driven. The values of Ng given by Vesic(1963) are approximately the lower bound,
and hence are used in this chapter (Fig. 1-6)

The frictional resistance at ultimate load, Q,, developed in a drilled shaft may be
calculated from the relation given in Eq.(1-6), in which

Fig. 1.6 Vesic's bearing capacity factors, Nq*, for deep foundations

The magnitude of Q,nmer) also can be reasonably estimated from a relationship based
on the analysis of Berezantzev et al. (1961) that can be expressed as

Qp(net) = qu,(th; -1 (1.8)
where
Ng= bearing capacity factor = 0.21e™'"% (See Table 1.1) (1.9)

w = correction factor = f (L/Dy)

In Eq. (1.9), ¢' is in degrees. The variation of v (interpolated values) with L/D, is
given in Fig. (1.7).
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Table 1.1 Variation of N; with ¢' [Eq. (1.9)]

o' (deg)

25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
41
42
43
44
45

14.72
17.45
20.68
24.52
29.06
34,44
40.83
48.39
57.36
67.99
80.59
935.52
11322
134.20
159.07
188.55
223.49
264.90
313.99
372.17
441.14

Estimation of Q;

1.0 5

0.9 4

0.8 1

» 0.7

0.6

0.5

26 28 a0 32 34 36 iR 40
Soil friction angle, &' (deg)

Fig. 1.7 Variation of w with ¢' and L/D,,

The frictional resistance at ultimate load, Q; , developed in a drilled shaft may be

calculated as

L

Qs = J," pfdz (1-6)

p= shaft perimeter= Dy

/= unit frictional (or skin) resistance= Ko, 'tand (1-10)
K= earth — pressure coefficient ~ K= 1-sin¢

o,'= effective vertical stress at any depth z

Thus,

Qs = [, pfdz = tD(1 — sin®') [,* o) tan §' dz (1-11)

The value of o, will increase to a depth of about 15D, and will remain constant

thereafter, as shown in Figure 1.8.

For cast-in-pile concrete and good construction techniques, a rough interface
develops and, hence, 6/¢' may be taken to be one. With poor slurry construction,
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5/¢' < 0.7 to 0.8.

Allowable Net Load, Qall (net)
An appropriate factor of safety should be applied to the ultimate load to obtain the net
allowable load, or

Qp(net)+Qs (1_12)

Qnet(all) = 7S

7 _ : e 3 *  Unit
frictional
resistance, f

—f 2 T‘ B

Y
Depth
(@) (b)

Fig. 1.8 Unit frictional resistance for piles in sand

1.7 Load Bearing Capacity Based on Settlement

On the basis of a database of 41 loading tests, Reese and O’Neill (1989) proposed a
method for calculating the load-bearing capacity of drilled shafts that is based on
settlement. The method is applicable to the following ranges:

1. Shaft diameter: Dy =0.52 to 1.2 m (1.7 to 3.93 ft)
2. Bell depth: L =4.7 to 30.5 m (15.4 to 100 ft)

3. Field standard penetration resistance: N60 = 5 to 60
4. Concrete slump = 100 to 225 mm (4 to 9 in.)
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Fig. 1.9 Development of Eq.( 1-13)

Reese and O’Neill’s procedure (see Figure 10.10) gives
Qu(net) = Z?]:l fipAL; + QpAp (1-13)

where

f; = ultimate unit shearing resistance in layer i
p = perimeter of the shaft = pD;

gp = unit point resistance

Ap = area of the base = (7/4)D’,

Following are the relationships for determining Qymes) in granular soils. Based on
Eq. (1-13)
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fi = Bol, < 192 kN /m? (1-14)
B =15-0.244z>° (025<pB <1.2) (1-15)

(where z; 1s in m)
ap (-3) = 57.5 Ngo < 43103 (for Dy < 1.27m)  (1-16)
If Dy, >1.27m, excessive settlement may occur. In that case, q, may be replaced by

1.27
Qpr = Dy (m) dp (1-17)

Figs. 1.10 and 1.11 may now be used to calculate the allowable load Q,jiner) based on
the desired level of settlement. Example 1.2 shows the method of calculating the net

allowable load.
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Fig. 1-10 Normalized based-load transfer versus settlement of sand
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1.8 Drilled Shafts in Clay: Load-Bearing Capacity

From Eq.(1-5), For saturated clays with ¢ =0, N; =1; hence the net base resistance
becomes

Qp(net) = ApCuNg (1-18)
Where c,,= undrained cohesion

The bearing capacity factor N; is usually taken to be 9. When the L/Dy> 4, N;=9,
which is the condition for most drilled shafts.

Experiments by Whitaker and Cooke (1966) showed that, for belled shafts, the full
value of N =9 is realized with a base movement of about 10 to 15% of D,. Similarly,

for straight shafts (D,=Dy), the full value of N;=9 is obtained with a base movement
of about 20% of D,

The expression for the skin resistance of drilled shafts in clay is

L=L1

Qs = Xj—¢ @ cypAL (1-19)

Where p= perimeter of the shaft cross section.

the value of a™ that can be used in Eq. (1-19) has not yet been fully established
however, the field test results available at this time indicate that @™ may vary between
1.0 to 0.3. Kulhawy and Jackson (1989) reported the field-test result of 106 straight
drilled shafts—65 in uplift and 41 in compression. The best correlation obtained from
the results is

a*=021+025CY) <1 (1-20)

Where p,= atmospheric pressure=100 kN/m”.
So, conservatively, we may assume that
a* =04 (1-21)
Load-Bearing Capacity Based on Settlement
Reese and O’Neill (1989) suggested a procedure for estimating the ultimate and

allowable (based on settlement) bearing capacities for drilled shafts in clay.
According to this procedure, we can use Eq. (1-13) for the net ultimate load, or
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Qunety = Xie1 fibAL; + qpA, (1-13)
The unit skin friction resistance can be given as
fi = aicuw (1-22)
The following values are recommended for «;

a; =0 for the top 1.5m (5 ft) and bottom 1 diameter, D;, of the drilled shaft. (Note: If
Dy > Dy, then a* = 0 for 1 diameter above the top of the bell and for the peripheral
area of the bell itself.)

a; =0.55 elsewhere.

The expression for g, (point load per unit area) can be given as
L
Gp = 64 (1+0.2 D—b) < 9¢,, < 40p, (1-23)

where
cy» = average undrained cohesion within a vertical distance of 2D, below the base
Pp. = atmospheric pressure

If Dy 1s large, excessive settlement will occur at the ultimate load per unit area, g,
as given by Eq. (1.23). Thus, for D, >1.91 m (75 in.), g, may be replaced by

Qpr = I+qp (1-24)
Where
E=—2__ <1 (1-25)

T @ Dp(mm)+e, —

@, = 2.78 X 1074 4+ 8.26 x 10_5(Di) <59x107* (1-26)
b
and
kN +0.5
@2 = 0.065[c,p ()] (1-27)



Chapter One DRILLED-SHAFT AND CAISSON FOUNDATIONS Dr. Ahmed H. Abdukareem

Figures (1-12) and (1-13) may now be used to evaluate the allowable load-bearing
capacity, based on settlement. (Note that the ultimate bearing capacity in Figure (1-
13) is qp, not qy;). To do so

Step 1. Select a value of settlement, s.

Step 2. Calculate YN, fipAL; and qpAp
Step 3. Using Figures 1.12 and 1.13 and the calculated values in Step 2, determine

the side load and the end bearing load.
Step 4. The sum of the side load and the end bearing load gives the total allowable

load.

1.0

5 (4 -

5

0.6 I|I Trend
| line
|

|

Side-load transfer

Ultimate side-load transfer.

Scttlement
Diumeter of shalt, £, '

Fig 1.12 Normalized side-load transfer versus settlement in cohesive soil

1.0 5

L8~ lr,-’

e 0.6

7.

End bearing

Ultimate end bearin,
=
1

Settlement of base .,
— (%0)

Diameter of base, D,

Fig. 1.13 Normalized base-load transfer versus settlement in cohesive soil
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Example 1.3
Example 1.4

1.9 Lateral Load- Carrying Capacity

The lateral load-carrying capacity of piers can be analyzed in a manner similar to that
presented in last section for piles. Therefore, it will not be repeated here.

1.10 Caissons
1.10.1 Types of Caissons

Caissons are divided into three major types:
(1) open caissons,

(2) box caissons (or closed caissons), and
(3) pneumatic caissons.

Open caissons (Figure 1.14) are concrete shafts that remain open at the top and
bottom during construction. The bottom of the caisson of the caisson has a cutting
edge. The caisson is sunk into place, and soil from the inside of the shaft is removed
by grab buckets until the bearing stratum is reached. The shafts may be circular,
square, rectangular, or oval. Once the bearing stratum is reached, concrete is poured
into the shaft (under water) to form a seal at its bottom. When the concrete seal
hardens, the water inside the caisson shaft is pumped out. Concrete is then poured
into the shaft to fill it. Open caissons can be extended to great depths, and the cost of
construction is relatively low. However, one of their major of disadvantages is the
lack of quality control over the concrete poured into the shaft for the seal. Also, the
bottom of the caisson cannot be thoroughly cleaned out. An alternative method of
open-caisson construction is to drive some sheet piles to form an enclosed area,
which is filled with sand and is generally referred to as a sand island. The caisson is
then sunk through the sand to the desired bearing stratum. This procedure is
somewhat analogous to sinking a caisson when the ground surface is above the water
table.
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Circular Caisson
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Fig. 1.14 Open caisson

Box caissons (Figure 1. 15) are caissons with closed bottoms. They are constructed
on land and then transported to the construction site. They are gradually sunk at the
site by filling the inside with sand, ballast, water, or concrete. The cost for this type

of construction is low. The bearing surface must be level, and if it is not, it must be

leveled by excavation.

Section
atA-A

Water

‘ 4 level
.
R

Fig. 1.15 Box caisson
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Pneumatic caissons (Figure 1.16) are generally used for depths of about (15-40 m).
This type of caisson is required when an excavation cannot be kept open because the
soil flows into the excavated area faster than it can be removed. A pneumatic caisson
has a work chamber at the bottom that is at least (3 m) high. In this chamber, the
workers excavate the soil and place the concrete. The air pressure in the chamber is
kept high enough to prevent water and soil from entering. Workers usually do not
counter severe discomfort when the chamber pressure is raised to about 75
Ib/in2(.100 kN/m?) above atmospheric pressure. Beyond this pressure, decompression
periods are required when the workers leave the chamber. When chamber pressures
of about (300 kN/m?) above atmospheric pressure are required, workers should not be
kept inside the chamber for more than 7722 hours at a time. Workers enter and leave
the chamber through a steel shaft by means of a ladder. This shaft is also used for the
removal of excavated soil and the placement of concrete. For large caisson
construction, more than one shaft may be necessary, an airlock is provided for each
one. Pneumatic caissons gradually sink as excavation proceeds. When the bearing
stratum is reached, the work chamber is filled with concrete. Calculation of the load-
bearing capacity of caissons is similar to that for drilled shafts. Therefore, it will not
be further discussed in this section.

l—Air lock

Compressed Blowout
air pipe BE pipe

Water
level

Men and
0 material shaft

F 3

Bucket for
removal of
soil

Ladder

Work
chamber

Fig 1.16 Pneumatic caisson
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1.11 Thickness of Concrete Seal in Open Caissons

we mentioned that, before dewatering the caisson, a concrete seal is placed at the
bottom of the shaft (Figure 1.17) and allowed to cure for some time. The concrete
seal should be thick enough to withstand an upward hydrostatic force from it bottom
after dewatering is complete and before concrete fills the shaft. Based on the theory
of elasticity the thickness, ¢, according to Teng (1962) is

(a) Circular Caisson

K3 Water level (b) Plan of Rectangular Caisson

-
-_-_?__...--._..  —

=]

h 4

-

L
v

-

[

¥ =

Fig. 1.17 Calculation of the thickness of seal for an open caisson

t =1.18R; \/fE (circular caisson) (1-28)

and

t = 0.8665B; (rectangular caisson)  (1-29)

Where

R; =1nside radius of a circular caisson

q =unit bearing pressure at the base of the caisson

f.=allowable concrete flexural stress (=.0.1-0.2 of f. where f, is than 28day
compressive strength of concrete)

B;, L; = inside with and length, respectively, of rectangular caisson

According to Figure 1.17, the value of g in Equations (1-28 and 1-29) can be
approximated as
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q=HYw - tyc (1 -3 0)

Where
Ye.=unit weight of concrete

The thickness of the seal calculated by Equations (1-28 and 1-29) will be sufficient
to protect it from cracking immediately after dewatering. However, two other
conditions should also be checked for safety.

1. Check for Perimeter Shear an Contact Face of Seal and Shaft

According to Figure 1-17, the net upward hydrostatic force from the bottom of the
seal is A;Hy, — A;ty.(whereA; = mR} for circular caissons and A; = B;L; for
rectangular caissons). So the perimeter shear developed is

_ AiHyyw—Atyc )
V= —pit (1-31)

Where
pi= inside perimeter of the caisson

Note that
pi= 2nR; (for circular caissons) (1-32)

And that
pi= 2(B; +L;) (for rectangular caisson) (1-33)

The perimeter shear given by Eq. (1-31) should be less than the permissible shear
stress, vy, or

v(53) < v (53) = 0179 f2C) (1-34)
Where
¢=0.85

2. Check for Buoyancy
If the shaft is completely dewatered, the buoyant upward force,F, , is

E, = (mR2?)Hy,, (for circular caissons) (1-35)
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E, = (B,L,)Hy,, (for rectangular caissons) (1-36)

The downward force, Fy , is caused by the weight of the caisson and the seal and by
the skin friction at the caisson-soil interface, or

Fq = We + Ws + Qs (1-37)

Where

W_.=weight of caisson
Ws=weight of seal
Qs=skin friction

If F; > E, , the caisson is safe from buoyancy. However, if F; < E, dewatering the

shaft completely will be unsafe. For that reason, the thickness of the seal should be
increased by At [over the thickness calculated by using Equation (1-28) or (1-29)] or

At = Fu—Fa (1-38)
AtYc

Example 1-5
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2.1 Introduction
A retaining wall is a wall that provides lateral support for a vertical or near-vertical
slope of soil. It is a common structure used in many construction projects. The most
common types of retaining wall may be classified as follows:
1. Gravity retaining walls
2. Semigravity retaining walls
3. Cantilever retaining walls
4. Counterfort retaining walls

Gravity retaining walls (Figure 1.1a) are constructed with plain concrete or stone
masonry. They depend for stability on their own weight and any soil resting on the
masonry. This type of construction is not economical for high walls.

In many cases, a small amount of steel may be used for the construction of gravity
walls, thereby minimizing the size of wall sections. Such walls are generally referred
to as semigravity walls (Figure 1.1b).

Cantilever retaining walls (Figure 1.1c) are made of reinforced concrete that
consists of a thin stem and a base slab. This type of wall is economical to a height of
about 8 m.

Counterfort retaining walls (Figure 1.1d) are similar to cantilever walls. At regular
intervals, however, they have thin vertical concrete slabs known as counterforts that
tie the wall and the base slab together. The purpose of the counterforts is to reduce
the shear and the bending moments.

To design retaining walls properly, an engineer must know the basic parameters—
the unit weight, angle of friction, and cohesion—of the soil retained behind the wall
and the soil below the base slab. Knowing the properties of the soil behind the wall
enables the engineer to determine the lateral pressure distribution that has to be
designed for.

There are two phases in the design of a conventional retaining wall. First, with the
lateral earth pressure known, the structure as a whole is checked for stability. The
structure 1s examined for possible overturning, sliding, and bearing capacity failures.
Second, each component of the structure is checked for strength, and the steel
reinforcement of each component is determined.

This chapter presents the procedures for determination of lateral earth pressure and
retaining-wall stability.
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(a) Gravity wall

Counterfort

(d) Counterfort wall

Figure 2.1 Types of retaining wall
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2.2 Lateral Earth Pressure at Rest

Consider a vertical wall of height H, as shown in Figure 2.2, retaining a soil having
a unit weight of y. A uniformly distributed load, g/unit area, is also applied at the
ground surface. The shear strength of the soil is

s=c +o0'tan@’

Where

¢’ = cohesion

@' = effective angle of friction
o' = effective normal stress

At any depth z below the ground surface, the vertical subsurface stress is
0o =q+Vyz (2.1)
If the wall is at rest and is not allowed to move at all, either away from the soil mass
or into the soil mass (i.e., there is zero horizontal strain), the lateral pressure at a
depth z is
o, = K,0,+ u (2.2)
Where
u= pore water pressure
K, = coefficient of at-rest earth pressure
For normally consolidated soil, the relation for K, (Jaky, 1944) is
K, =1 —sin@’ (2.3)
Equation (2.3) is an empirical approximation.

For overconsolidated soil, the at-rest earth pressure coefficient may be expressed as
(Mayne and Kulhawy, 1982)

K, = (1 — sin@')OCRS"?' (2.4)
where OCR = overconsolidation ratio.
With a properly selected value of the at-rest earth pressure coefficient, Eq. (2.2) can

be used to determine the variation of lateral earth pressure with depth z. Figure 2.2b
shows the variation of g, with depth for the wall depicted in Figure 2.2a. Note that if
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the surcharge q=0 and the pore water pressure the pressure u=0, diagram will be a
triangle. The total force, P, , per unit length of the wall given in Figure 2.2a can now
be obtained from the area of the pressure diagram given in Figure 2.2b and is

P, = P+ P, = qKoH + ~yH?K, (2.5)

where
P,= area of rectangle 1
P,= area of triangle 2
The location of the line of action of the resultant force, P,, can be obtained by taking
the moment about the bottom of the wall. Thus,

P GG (2.6)

o

|<— K, (g +vH) —>|

(a) (b)

Figure 2.2 At-rest earth pressure
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If the water table is located at a depth z< H, the at-rest pressure diagram shown in
Figure 2.2b will have to be somewhat modified, as shown in Figure 2.3. If the
effective unit weight of soil below the water table equals y (i.e., Ysat - Yw ), then

Atz=0:0, = K,0, = K,q
Atz=H, : 0y, = K,0, = K,(q + YH; )

And
Atz=H,, o, = K,0, = K,(q +YH, +V'H,)

Note that in the preceding equations, g, and oy are effective vertical and horizontal
pressures, respectively. Determining the total pressure distribution on the wall
requires adding the hydrostatic pressure, u, which is zero from z=0 to z= H; and is
YwH> at z= Hy. The variation of g5, and u with depth is shown in Figure 2.3b. Hence,
the total force per unit length of the wall can be determined from the area of the
pressure diagram. Specifically,

PO :A1+A2 +A3 +A4+A5

where A= area of the pressure diagram.
So,

1 1 1
P, = KoqH, + EKOVHf + K,(q + yH)H, + - K,y'HZ + -y, H?

Ll

A
Y |
i
H o' ]
| ® |
I
! Water table 'l @ :
e e K,(¢+vH,)
H -
?:"Ll.l
H ¢ l«——— 7}, u
¢’
| 0 @
le .
[ e Yy —>|

K., (g+vH, +v'H>)
(a) (b)

Figure 2.3 At-rest earth pressure with water table located at a depth z< H
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2.3 Active Pressure
2.3.1 Rankine Active Earth Pressure

The lateral earth pressure described in Section 2.2 involves walls that do not yield at
all. However, if a wall tends to move away from the soil a distance Ax as shown in
Figure 1.4a, the soil pressure on the wall at any depth will decrease. For a wall that is
frictionless, the horizontal stress, gy, , at depth z will equal K,0,(= K,yz) when Ax is
zero. However, with Ax > 0, a5, will be less than K, a,.

The Mohr’s circles corresponding to wall displacements of Ax =0 and Ax > 0 are
shown as circles a and b, respectively, in Figure 2.4b. If the displacement of the wall,
Ax , continues to increase, the corresponding Mohr’s circle eventually will just touch
the Mohr—Coulomb failure envelope defined by the equation

S=c"+o'tan®’

This circle, marked c in the figure, represents the failure condition in the soil mass;
the horizontal stress then equals o, , referred to as the Rankine active pressure. The
!

slip lines (failure planes) in the soil mass will then make angles of + (45 + %) with

the horizontal, as shown in Figure 2.4a.
Equation (2.7) relates the principal stresses for a Mohr’s circle that touches the
Mohr—Coulomb failure envelope:

o, = ostan? (45 + 2) + 2¢'tan (45 + Q—) (2.7)
3 2 2

For the Mohr’s circle ¢ in Figure 2.4b,

Major principle stress: o; = 0,
and

Minor principle stress: g3 = gy
Thus,

o, = ojtan® (45 + 2) + 2¢'tan (45 +
0 2 2

! !
' (0P} 2c

N 7
tan2(45+®7) tan (45+%)

or
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o, = o,tan® (45 — 2) — 2¢'tan (45 - %
a 2 2

=o,K, — 2c'\/K, (2.8)
where K, = tan? (45 — %) = Rankine active pressure coefficient.

The variation of the active pressure with depth for the wall shown in Figure 2.4a is
given in Figure 2.4c. Note that g, = 0 at z= 0 and o, = yH at z=H. the pressure

distribution shows that at z=0 the active pressure equals —2c'\/K, , indicating a
tensile stress that decreases with depth and becomes zero at a depth z= z. , or

vz.K, — 2c'\J/K, =0
And

2c’

Z. =
“ r/Ka

(2.9)

The depth z. is usually referred to as the depth of tensile crack, because the tensile
stress in the soil will eventually cause a crak along the soil-wall interface.

Thus, the total Rankine active force per unit length of the wall before the tensile
crack occurs is

P, = fOHJC’le = fOHyzKadz— fOHZC’JKadZ

1 !
= EyHZKa — 2c'H /K, (2.10)
After the tensile crack appears, the force per unit length on the wall will be caused

only by the pressure distribution between depths z= z, and z= H as shown by the
hatched area in Figure 2.4c. This force may be expressed as

P =5 (H — z.)(YHK, — 2¢'[Kq) Q2.11)

P, = %(H - ijK—) (YHK, — 2¢'JKy) (2.12)
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However, it is important to realize that the active earth pressure condition will be
reached only if the wall is allowed to “yield” sufficiently. The necessary amount of
outward displacement of the wall is about 0.001H to 0.004H for granular soil
backfills and about 0.01H to 0.04H for cohesive soil backfills.

Note further that if the total stress shear strength parameters (c, ¢) were used, an
equation similar to Eq. (2.9) could have been derived, namely

o, = 0, tan® (45 — %) — 2c tan (45 — %)

Example 2.1
Example 2.2
Example 2.3
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2.3.2 Rankine Active Earth Pressure for Inclined Backfill

If the backfill of a frictionless retaining wall is a granular soil (¢ =0) and rises at an
angle o with respect to the horizontal (see Figure 2.5), the active earth-pressure
coefficient may be expressed in the form

cosa—+/ cos2a—cos2@’
cosa++/ cos2a—cos2@’

K, = cosa (2.13)

where @'=angle of friction of soil.
At any depth z, the Rankine active pressure may be expressed as
o, = YH?*K, (2.14)
Also, the total force per unit length of the wall is
P, =1/2yH?K, (2.15)
Note that, in this case, the direction of the resultant force P, is inclined at an angle

with the horizontal and intersects the wall at a distance H/3 from the base of the wall.

Table 2.1 presents the values of K, (active earth pressure) for various values of o
and @'

Figure 2.5 Notations for active pressure—Eqs. (2.13), (2.14), (2.15)
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Table 2.1 Values of K, [Eq. (2.13)]

o (deg) &' (deg) —
28 29 30 31 32 33 34 35 36 27 a8 39 40
0 03610 0.3470 0.3333 0.3201 0.3073 0.2827 0.271 0.2596 0.2486 0.2379 0.2275 0.2174
I V3612 (.3471 0.3335 (0.3202 0.3074 it 02711 (.2597 0.2487 00,2380 0.2276 02175
2 03618 0.3476 1.3339 0.3207 0.3078 £),2832 (L2714 0. 2600 1,248 (1.2382 0.2278 0.2177
0.3627 03445 (1.3347 03214 .3084 0.2837 0.2719 0.2605 00,2494 0.2386 0.2282 (12181
4 (L3639 0.3496 (1.3358 0.3224 0.3094 (1.2845 0.2726 0.2611 (1.2500 0.2392 0.2287 02186
5 ) { 0.3512 0.3372 0.3237 0.3105 (L2855 0.2736 0.2620 (1.2508 0.2399 0.2192
6 ] 2 (L3339 (0.3253 0.3120 (1.2868 (0.2747 .2631 0.2400 0.2200
7 (). 0.3553 0.3410 0.3272 0.3138 (1.2443 0.2761 0.2644 0.2200
b3 03730 0.3530 0.3435 {0.3294 ().3159 00,2900 0.2778 0,2639 0.2544 0.2220
9 (13764 0.3611 (1.3463 (.3320 (L3182 (1292 (.2796 (1,2676 (1.2560 ().2233
1 (1.3802 0.3646 0.3495 00,3350 0.3210 00,2944 0.2818% (), 257% 0.2247
11 03546 0.3686 0.3532 0.3383 0.3241 0.2970 0.2841 ().2598 0.2263
12 0.3896 0.3731 (.3573 0.342) 0.3275 0.2999 (.2868 (1.262] 0.2281
13 ).3952 0.3782 (.3620 (3464 0.3314 0,303 0.2898 10.2646 0.2301
14 04015 0.3839 7 0.3511 0.3357 0. 3068 0.2931 02674 2322
15 0. 4086 0.3903 (L3564 (.3405 03108 0,2968 0.27035 (.2346
16 (14165 0.3975 (0.3622 (,3458 0.3152 (.3008 0.2739 (.237
17 (3.4255 00,4056 (308K 0.351% (L3201 0.3053 0.2776 {
18 0.4357 0.4146 0.3761 0.3584 ) 0.3102 0.2817
14 0.4473 0.4249 [T (.3637 ] ().2862
20 {14605 14365 (h3934 (L3734 (J.2911
21 0.4758 0.4498 04037 0.3830 0.29635
(1.4936 (1.4651 (4154 0.3934 0.3025
23 .5147 (14820 (4287 (.4050 (.300]
24 0.5404 (1.5041 04440 0.4183 0.3164
23 0.5727 0.5299 (4619 0.4336 0.3245

2.3.3 Coulomb's Active Earth Pressure

The Rankine active earth pressure calculations discussed in the preceding sections
were based on the assumption that the wall is frictionless. In 1776, Coulomb
proposed a theory for calculating the lateral earth pressure on a retaining wall with
granular soil backfill. This theory takes wall friction into consideration.

To apply Coulomb’s active earth pressure theory, let us consider a retaining wall
with its back face inclined at an angle Bwith the horizontal, as shown in Figure 2.6a.
The backfill is a granular soil that slopes at an angle o a with the horizontal. Also, let
8 be the angle of friction between the soil and the wall (i.e., the angle of wall
friction).

Under active pressure, the wall will move away from the soil mass (to the left in the
figure). Coulomb assumed that, in such a case, the failure surface in the soil mass
would be a plane (e.g., BC;, BC,, ... ). So, to find the active force, consider a
possible soil failure wedge ABC,. The forces acting on this wedge (per unit length at
right angles to the cross section shown) are as follows:

1. The weight of the wedge, W.
2. The resultant, R, of the normal and resisting shear forces along the surface,BC;.
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The force R will be inclined at an angle to the normal drawn to BC;.
3. The active force per unit length of the wall, P,, which will be inclined at an angle &
to the normal drawn to the back face of the wall.

For equilibrium purposes, a force triangle can be drawn, as shown in Figure 2.6b.
Note that 0, is the angle that BC; makes with the horizontal. Because the magnitude
of W,as well as the directions of all three forces, are known, the value of P, can now
be determined. Similarly, the active forces of other trial wedges, such as ABC,,
ABGC;, ..., can be determined. The maximum value of P, thus determined is
Coulomb’s active force (see top part of Figure 2.7), which may be expressed as

P, = 1/2yH?K, (2.16)
Where

K.= Coulomb's active earth-pressure coefficient
sin?(B—-0")

2
sin?B sin(ﬁ_(gr)lHjsin(@’M’)sin(q)'_a)]

2.17)

sin(p+6") sin(a+p)

and H= height of the wall.

The values of the active earth pressure coefficient, K, ,for a vertical retaining wall
(B = 90°) with horizontal backfill (« = 0°) are given in Table 2.2. Note that the line
of action of the resultant force (P,) will act at a distance H/3 above the base of the
wall and will be inclined at an angle & to the normal drawn to the back of the wall.

In the actual design of retaining walls, the value of the wall friction angle & is
assumed to be between @' /2 and 2/3@’. The active earth pressure coefficients for

various values of @', @, and B with @'/2 and 2/3@" are respectively given in
Tables 2.3 and 2.4. These coefficients are very useful design considerations.



Chapter Two Lateral Earth Pressure and Retaining Walls Dr. Abmed H. Abdulkareem

Prrll]'l'.l\l

Active -
force

Wall movement
away from

Figure 2.6 Coulomb’s active pressure

Table 2.2 Values of K, Eq(2.17) for f=90° and a=0°

&' (deg)

&' (deg) 0 5 10 15 20 25
28 03610 03448  0.3330 03251 03203 03186
30 03333 03189 03085 03014 02973  0.2956
32 03073 02945 02853  0.2791 02755  0.2745
34 02827 02714 02633 02579 02549  0.2542
36 02596 02497 02426 02379 02354 0.2350
38 02379 02292 02230 02190 02169 02167
40 02174 02098 02045 02011  0.1994  0.1995

42 0.1982 0.1916 0.1870 0.1841 0.1828 0.1831
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Table 2.3 Values of K, Eq(2.17) for & =2/3 ¢

f |deg)
e [deg) ' (deg) 20 86 80 75 70 65

0 28 0.3213 0.3588 0.4007 (1.4481 0.5026 0.5662
29 0.3091 0.3467 (1.3886 14362 0.4908 0.5547

30 0.2973 0,3349 1.3769 0.4245 0.4794 .5435

3l 0.2860 (.3235 0.3655 04133 (04682 0,5326

32 0.2750 0.3125 0.3545 (1.4023 04574 0.5220

33 0.2645 0.3019 113439 0.3917 0.4469 05117

34 (.2543 0.2916 (13335 0.3813 0.4367 0.5017

35 0.2444 L2816 .3235 0.3713 04267 04919

36 0,2349 0.2719 0.3137 0.3615 04170 0.4824

37 0.2257 0.2626 0.3042 0.3520 0.4075 0.4732

38 0.2168 (12535 0.2950 0.3427 0.3983 (04641

30 0.2082 1.2447 1).2861 .3337 00,3894 (1.4553

40 0.1998 0.2361 0.2774 0.3249 0.3806 04468

41 L1918 0.2278 (1.2689 03164 0.3721 0.4384

42 0.1840 0.2197 0.2606 0.3080 0.3637 04302

3 28 0.3431 0.3845 0.4311 04843 15461 06190
29 0.3295 0.3709 0.4175 0.4707 (0.5325 0.6056

30 L3165 0.3578 04043 0.4575 (0.5194 0.5926

31 0.3039 0.3451 0.3916 0.4447 0.5067 0.5800

3z 0.2919 0.3329 0.3792 0.4324 (1.4943 0.5677

33 0.2803 0.3211 1.3673 04204 0.4823 0.5558

34 0.2691 0.3097 ().3558 (0.4088 0.4707 0.5443

35 (0.2583 0.2987 0.3446 0.3975 0.4594 0.5330

36 0.2479 .2881 1.3338 0.3866 (4484 0.5221

37 (.2379 0.2778 .3233 0.3759 04377 05115

38 0.2282 0.2679 03131 0.3656 04273 0.5012

39 .2188 0.2582 0.3033 (0.3556 04172 0.4911

40 1.2098 0.2489 0.2937 0.3458 0.4074 04813

41 02011 (1.2398 0.2844 .3363 0.3978 04718

42 01927 1.2311 0.2753 0.3271 0.3884 0.4625

10 28 0.3702 D.4164 .4686 0.5287 0.5992 0.6834
29 0.3548 0.4007 0.4528 0.5128 [).5831 0.6672

30 {1.3400 0.3857 0.4376 0.44974 0.5676 0.6516

31 0.3259 0.3713 0.4230 0.4826 1.5526 0.6365

32 0.3123 0.3575 0.4089 0.4683 0.5382 0.6219

33 0.2993 0.3442 0.3953 (14545 0.5242 1.6078

34 0.2868 0.3314 0.3822 0.4412 0.5107 0.5942

B 0.2748 0.3190 0.3696 (L4283 0.4976 0.5810

36 0.2633 03072 1.3574 0.4158 0.4849 0.5682

37 0.2522 0.2957 0.3456 0.4037 0.4726 0.5558

38 0.2415 0.2846 0.3342 0.3920 0.4607 .5437

39 0.2313 0.2740 0.3231 0.3807 0.4491 0.5321

40 0.2214 0.2636 0.3125 0.3697 0.4379 0.5207

41 0.2119 0.2537 0.3021 0.3590 0.4270 05007

42 0.2027 0.244] 0.292] 0.3487 4164 0.4990

15 28 0.4065 (.4585 0.5179 .5868 (1.6685 0.7670

[comtinued)
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Table 2.3 Values of K, Eq(2.17) for & =2/3 ¢

B (deg) E |

« (deg) o' (deg) %0 85 80 75 70 &

29 03881 04397 04987 05672 06483 07463
30 03707 04219 04804  0.5484  0.6291 07265
31 03541 04049 04629 05305 06106 07076
32 03384 03887 04462 05133 05930 0.6895
33 03234 03732 04303 04969 05761 0672
34 03091 03583 04150 04811 05598  (.6554
35 02954 03442 04003 04659 05442 (6393
36 02823 03306 03862 04513 05291 06238
37 02698 03175 03726 04373 05146 0.6089
38 02578 03050 03595 04237 05006  0.5945
39 02463 02929 03470 04106 04871  0.5805
40 02353 02813 03348 03980 04740  0.567
41 02247 02702 03231 03858 04613 (.554]
42 02146 02594 03118 03740 04491 05415
20 28 04602 05205 035900 06714 07689  0.8880
29 04364 04958 05642 06445 07406 08581
30 04142 04728 05403 06195 07144 08303
31 03935 04513 05179 05961  0.6898  (.8043
32 03742 04311 04968 05741  0.6666  0.7799
33 03550 04121 04769 05532 06448  0.7569
34 03388 03941 04581 05335  0.6241 07351
35 03225 03771 04402 05148 0.6044 07144
36 03071 03609 04233 04969  0.5856  0.6947
37 02925 03455 04071 04799 05677 0.6759
38 0.2787 03308 03916 04636  0.5506  0.6579
39 02654 03168 03768 04480 05342 0.6407
40 02529 03034 03626 04331 05185  0.6242
41 0.2408 02906 03490 04187  0.5033  0.6083
42 02294 02784 03360 04049 04888  0.5930

sl

Table 2.4 Values of K, Eq(2.17) for & =1/2 ¢

a (deg) ¢’ (deg) 90 85 80 75 70 _6_5:#
0 28 03264 03629  0.4034 0.4490  0.5011 0.5616
29 0.3137 0.3502 0.3907 04363 04886  0.5492
30 0.3014  0.3379  0.3784 0.4241 0.4764 i'l.ﬁ.‘*?i
31 0.2896 0.3260 0.3665 04121 0.4645 0.5253
32 02782  0.3145  0.3549 04005 04529 05137
33 0.2671 0.3033  0.3436 0.3892 0.4415 0.5022
34 02564 02925  0.3327 03782 04305 04913
35 0.2461 0.2820  0.3221 03675 04197 | u;:ﬁ]z
36 02362 02718 03118 0.3571 0.4092 Hi_,
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Table 2.4 Values of K, Eq(2.17) for§ =1/2 ¢

B (deg)

« (deg) o' (deg) 20 85 80 75 70 65
37 .2265 0.2620 0.3017 0,3469 0.399(0) 0.4599
38 02172 0.2524 (.2920 0.3370 0.3890 0.4498
39 0.2081 0.2431 0.2825 0.3273 .3792 04400
40 0.1994 0.2341 .2732 0.3179 0).3606 0.4304
4] 01909 0.2253 .2642 0.3087 (.3602 0.4209
42 0.1828 02168 00,2554 0.2997 0.3511 04177

5 28 0.3477 0.3879 0.4327 0.4837 0.5425 0.6115
29 0.3337 0.3737 0.4185 0.4694 0.5282 0.5972
30 0.3202 0.3601 0.4048 (1.4556 0.5144 0.5833
31 0.3072 0.3470 0.3915 0.4422 0.5009 0.5698
32 0.2946 0.3342 0.3787 0.4292 0.4878 0.5566
13 (0.2825 0.3219 0.3662 0.4166 04750 (,5437
34 0.2709 0.3101 10,3541 (.41043 0.4626 10,5312
Rh] 1.2596 0.2986 0.3424 0.3924 04505 0.5190
36 (1.2488 (0.2874 0.3310 0.3808 0.4387 0.5070
7 (.2383 0.2767 0.3199 0.3695 04272 0.4954
3R 0.2282 0.2662 0.3002 0.3585 0.4160 0.4540
39 0.2185 0.2561 (1.2988 0.3478 0.4050 0.4729
40 (1.2000 0.2463 (L2887 0.3374 0.3944 04620
EY| 0.1999 (.2368 (0.2788 0.3273 0.3840 0.4514
42 0.1911 0.2276 .2693 0.3174 0.3738 0.4410

10 28 0.3743 0.4187 04688 0.5261 0.5928 0.6719
29 (.3584 0.4026 0.4525 0.5006 0.5761 0.6549
30 0.3432 0.3872 0.4368 0.4936 0.5599 (.6385
3l 0.3286 0.3723 0.4217 0.4782 00.5442 0.6225
32 0.3145 1.3580 0.4071 0.4633 0.5290 0.6071
3 03011 (1.3442 .3930 0.4489 0.5143 0.5920
34 (.2881 0.3309 0.3793 0.4350 0.5000 0.5775
a5 0.2757 0.3181 0.3662 0.4215 0.4862 0.5633
6 0.2637 0.3058 0.3534 04084 04727 ).5495
37 0.2522 0.2938 3411 0.3957 0.4597 0.5361
38 0.2412 0.2823 0.3292 00,3833 0.4470 0.5230
39 (1.2305 0.2712 03176 0.3714 0.4346 (L5103
40 0.2202 0.2604 (0.3064 0.3597 0.4226 0.4979
41 0.2103 0.2500 0.2956 0.3454 04109 (L4858
42 (1.2007 0.2400 (1.2850 0.3375 0.3995 (1.4740
15 28 (1.4005 0.4594 0.5159 0.5812 0.6579 (1.7498
29 (1.3908 0.4402 0.4964 0.5611 0.6373 1.7284
n 0.3730 0.4220 04777 0.5419 06175 (L7080
K] | (1.3560 0.4040 0.4398 0.5235 (.5983 (.6884
a2 (1.3398 0.3880 0.4427 0.5059 0.5803 (.6695
33 0.3244 0.3721 0.4262 0.4889 0.5627 0.6513
34 0.3097 0.3568 04105 0.4726 0.5458 0.6338
a5 0.2956 0.3422 0.3953 (.4569 0.5295 0.6168

(comtinued)
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2.4 Passive Pressure
2.4.1 Rankine Passive Earth Pressure

Figure 2.8a shows a vertical frictionless retaining wall with a horizontal backfill. At
depth z, the effective vertical pressure on a soil element is 6,=yz Initially, if the wall
does not yield at all, the lateral stress at that depth will be 6,=K,c, . This state of
stress 1s illustrated by the Mohr’s circle a in Figure 2.8b. Now, if the wall is pushed
into the soil mass by an amount Ax as shown in Figure 2.8a, the vertical stress at
depth z will stay the same; however, the horizontal stress will increase. Thus, o}, will
be greater than K., . The state of stress can now be represented by the Mohr’s circle
b in Figure 2.8b. If the wall moves farther inward (i.e., is increased still more), the
stresses at depth z will ultimately reach the state represented by Mohr’s circle ¢. Note
that this Mohr’s circle touches the Mohr—Coulomb failure envelope, which implies
that the soil behind the wall will fail by being pushed upward. The horizontal stress,
Gn , at this point is referred to as the Rankine passive pressure, or 6, = G'p :

For Mohr’s circle ¢ in Figure 2.8b, the major principal stress is G'p and the minor
principal stress is o, .Substituting these quantities into Eq. (2.8) yields

! ! QI ! QI
oy = oytan’ (45 + ?) +2c'tan (45 + ) (2.18)

K,= Rankine passive earth-pressure coefficient

K, = tan? (45 + %) (2.19)
o, = 05Ky, + 2¢' /K, (2.20)

Equation (2.20) produces (Figure 2.18c), the passive pressure diagram for the wall
shown in Figure 2.18a. Note that at z=0

0, =0 and o, = 2c'\/K,
and at z= H
0, =YH and o, = yHK, + 2¢'\/K,,

The passive force per unit length of the wall can be determined from the area of the
pressure diagram, or

1 !
P, =SYH?K, + 2c'H /K, (2.21)
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The approximate magnitudes of the wall movements, Ax , required to develop

failure under passive conditions are as follows:

Wall movement for

Soil type passive condition, Ax
Dense sand 0.005H
Loose sand 0.01H
Stff clay 0.01H
Soft clay 0.05H
Direction of
wall movement I L1
. 5 i I R -~
—>{ Avje- 45 —¢'2 I ;
A , 45 92 FN N
[y < e SIS i S TS TN TS
I=? e =7 - [P
/r ~ " ~ s P -~ .\‘/... Y
= g T ,-’/ & p
o & (!}
>
H 3 A
v
s N Rotation about
this point (i)
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an & T e
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e / X
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\
| X
\
v : .Y
K, yH + 2cVK, —>
)

Figure 2.8 Rankine passive pressure
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If the backfill behind the wall is a granular soil (i.e., c=0 ), then, from Eq. (2.21), the
passive force per unit length of the wall will be

1
P, = SYH?K, (2.22)

2.4.2 Rankine Passive Earth Pressure for Inclined Backfill

For a frictionless vertical retaining wall (Figure 2.5) with a granular backfill (c=0),
the Rankine passive pressure at any depth can be determined in a manner similar to
that done in the case of active pressure in Section 2.3.2. The pressure is

o, = vzK, (2.23)

And the passive force is

P, = 1/2yH?K, (2.24)
where
2y 2m/
Kp — cosa cosa++/ cos?a—cos?Q (2‘25)

cosa—+/cos2a—cos2@’

As 1in the case of the active force, the resultant force, Py, 1s inclined at an angle o
with the horizontal and intersects the wall at a distance H/3 from the bottom of the
wall. The values of K, (the passive earth pressure coefficient) for various values of a
and ¢ are given in Table 2.6.

Table 2.6 Passive Earth Pressure Coefficient [from Eq. (2.25)]

T —
&' (deg)—

la (deg) 28 30 32 34 36 38 %0
0 2770 3000 3.255 3.537 3.852 4.204 o

) 2715 2.943 3.196 3476 3.788 4,136 {527

10 1 55] 2.775 3.022 3.295 3.598 3.937 L316

15 2.284 2.502 2.740 3.003 3.293 3.615 3.977

) 1918 2.132 2.362 2612 2.886 3.189 526

25 1.434 |.664 1.894 2.135 2.394 2.676 2.987
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2.4.3 Coulomb's Passive Earth Pressure

Coulomb (1776) also presented an analysis for determining the passive earth
pressure (i.e., when the wall moves into the soil mass) for walls possessing friction
(8=angle of wall friction) and retaining a granular backfill material similar to that
discussed in Section 2.3.3.
To understand the determination of Coulomb’s passive force, P, , consider the wall
shown in Figure 2.9a. As in the case of active pressure, Coulomb assumed that the
potential failure surface in soil is a plane. For a trial failure wedge of soil, such as
ABC,, the forces per unit length of the wall acting on the wedge are

1. The weight of the wedge, W
2. The resultant, R, of the normal and shear forces on the plane and
3. The passive force, P,

Figure 2.9b shows the force triangle at equilibrium for the trial wedge ABC,. From
this force triangle, the value of P, can be determined, because the direction of all
three forces and the magnitude of one force are known.

Similar force triangles for several trial wedges, such as ABC,;, ABC,, ABC;, ... can
be constructed, and the corresponding values of P, can be determined. The top part of
Figure 2.9a shows the nature of variation of P, the values for different wedges. The
minimum value of P, in this diagram i1s Coulomb’s passive force, mathematically
expressed as

P, =1/2yH?K, (2.26)
Where
K.= Coulomb's passive earth-pressure coefficient

2ol
= S8 (227)

2
o | [sin(@'+8")sin@+a)
sin? B sin(f+46 )ll jsin(3+5’)sin(a+ﬁ)

and H= height of the wall.

The values of the passive pressure coefficient, K,,, for various values of @' and & are
given in Table 2.7 (8 =90°, a = 0°).
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Note that the resultant passive force, P, , will act at a distance H/3 from the bottom

of the wall and will be inclined at an angle § to the normal drawn to the back face of
the wall.

Passive force

Wall movement
— toward

the soil

Figure 2.9Coulomb’s passive pressure

Table 7.10 Values of [from Eq. (2.27)] for B=90° and a=0°

o’ (deg)
& (deg) O 5 10 15 20
15 {608 1900 2130  2.405 2,735
20 S040 2313 2636 3.030 3.525
25 5464 2830 3286  3.855 4.597
20 3000 3506 4143 4977 6.105
35 1600 4390 5310 6.854 8.324

40 4.600 5.590 6.946 8.870 11.772
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1. Introduction
A retaining wall is a wall that provides lateral support for a vertical or near-vertical
slope of soil. It is a common structure used in many construction projects. The most
common types of retaining wall may be classified as follows:
1. Gravity retaining walls
2. Semigravity retaining walls
3. Cantilever retaining walls
4. Counterfort retaining walls

Gravity retaining walls (Figure 3.1a) are constructed with plain concrete or stone
masonry. They depend for stability on their own weight and any soil resting on the
masonry. This type of construction is not economical for high walls.

In many cases, a small amount of steel may be used for the construction of gravity
walls, thereby minimizing the size of wall sections. Such walls are generally referred
to as semigravity walls (Figure 3.1b).

Cantilever retaining walls (Figure 3.1c) are made of reinforced concrete that
consists of a thin stem and a base slab. This type of wall is economical to a height of
about 8 m as Figure (3.2).

Counterfort retaining walls (Figure 3.1d) are similar to cantilever walls. At regular
intervals, however, they have thin vertical concrete slabs known as counterforts that
tie the wall and the base slab together. The purpose of the counterforts is to reduce
the shear and the bending moments.

To design retaining walls properly, an engineer must know the basic parameters—
the unit weight, angle of friction, and cohesion—of the soil retained behind the wall
and the soil below the base slab. Knowing the properties of the soil behind the wall
enables the engineer to determine the lateral pressure distribution that has to be
designed for.

There are two phases in the design of a conventional retaining wall. First, with the
lateral earth pressure known, the structure as a whole is checked for stability. The
structure is examined for possible overturning, sliding, and bearing capacity failures.
Second, each component of the structure is checked for strength, and the steel
reinforcement of each component is determined.

This chapter presents the procedures for determination of lateral earth pressure and
retaining-wall stability.
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(a) Gravity wall

Counterfort

(d) Counterfort wall

Figure 3.1 Types of retaining wall
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Figure 3.2 A cantilever retaining wall under construction

3.2 Gravity and Cantilever Walls
3.2.1 Proportioning Retaining Walls

In designing retaining walls, an engineer must assume some of their dimensions.
Called proportioning, such assumptions allow the engineer to check trial sections of
the walls for stability. If the stability checks yield undesirable results, the sections can
be changed and rechecked. Figure 3.3 shows the general proportions of various
retaining-wall components that can be used for initial checks.

Note that the top of the stem of any retaining wall should not be less than about
0.3 m. for proper placement of concrete. The depth, D, to the bottom of the base slab
should be a minimum of 0.6m. However, the bottom of the base slab should be
positioned below the seasonal frost line.

For counterfort retaining walls, the general proportion of the stem and the base slab
is the same as for cantilever walls. However, the counterfort slabs may be about 0.3
m thick and spaced at center-to-center distances of 0.3H to 0.7H.



min
0.02

min

H

4 Froia]

e e | 012 0 D —— X
0174 LEe e 0.1H
T k——05107H - T
le——— 051007 H ——
(a) (b)

Figure 3.3 Approximate dimensions for various components of retaining wall for
initial stability checks: (a) gravity wall; (b) cantilever wall

3.3 Application of Lateral Earth Pressure Theories to Design

The fundamental theories for calculating lateral earth pressure were presented in
Chapter 2. To use these theories in design, an engineer must make several simple
assumptions. In the case of cantilever walls, the use of the Rankine earth pressure
theory for stability checks involves drawing a vertical line 4B through point A4,
located at the edge of the heel of the base slab in Figure 3.4a. The Rankine active
condition is assumed to exist along the vertical plane 4B. Rankine active earth
pressure equations may then be used to calculate the lateral pressure on the face 4B
of the wall. In the analysis of the wall’s stability, the force P,rankine) » the weight of
soil above the heel, and the weight W, of the concrete all should be taken into
consideration. The assumption for the development of Rankine active pressure along
the soil face 4B is theoretically correct if the shear zone bounded by the line AC is
not obstructed by the stem of the wall. The angle, 4, that the line 4C makes with the
vertical is

' 1 . sina
n=45+>— . 5 Hn l(in?) S

A similar type of analysis may be used for gravity walls, as shown in Figure 3.4b.
However, Coulomb’s active earth pressure theory also may be used, as shown in
Figure 3.4c. If it 1s used, the only forces to be considered are P,coulomn) and the weight
of the wall, W..
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=

(b)

—— =

P

a(Rankine)

PrH Rankine)

Figure 3.4 Assumption for the determination of lateral earth pressure: (a) cantilever

wall; (b) and (c) gravity wall
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Y1
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Figure 3.4 (continued)

If Coulomb’s theory is used, it will be necessary to know the range of the wall
friction angle & with various types of backfill material. Following are some ranges
of wall friction angle for masonry or mass concrete walls:

Backfill material Range of 6’ (deg)

Gravel 27-30
Coarse sand 20-28
Fine sand 15-25
Stff clay 15-20
Silty clay 12-16

In the case of ordinary retaining walls, water table problems and hence hydrostatic
pressure are not encountered. Facilities for drainage from the soils that are retained

are always provided.
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3.4 Stability of Retaining Walls
A retaining wall may fail in any of the following ways:
e [t may overturn about its toe. (See Figure 3.5a.)
e It may s/ide along its base. (See Figure 3.5b.)
e It may fail due to the loss of bearing capacity of the soil supporting the base. (See
Figure 3.5c¢.)
e [t may undergo deep-seated shear failure. (See Figure 3.5d.)
e It may go through excessive settlement.

The checks for stability against overturning, sliding, and bearing capacity failure
will be described in Sections 3.5, 3.6, and 3.7. When a weak soil layer is located at a
shallow depth—that is, within a depth of 1.5 times the width of the base slab of the
retaining wall—the possibility of excessive settlement should be considered. In some
cases, the use of lightweight backfill material behind the retaining wall may solve the
problem.

Deep shear failure can occur along a cylindrical surface, such as abc shown in
Figure 3.6, as a result of the existence of a weak layer of soil underneath the wall at a
depth of about 1.5 times the width of the base slab of the retaining wall. In such
cases, the critical cylindrical failure surface abc has to be determined by trial and
error, using various centers such as O. The failure surface along which the minimum
factor of safety is obtained is the critical surface of sliding. For the backfill slope
with o less than about 10°, the critical failure circle apparently passes through the
edge of the heel slab (such as def in the figure). In this situation, the minimum factor
of safety also has to be determined by trial and error by changing the center of the
trial circle.
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Figure 3.5 Failure of retaining wall: (a) by overturning; (b) by sliding;
(c) by bearing capacity failure; (d) by deep-seated shear failure
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iy // Weak so

- —_—
Figure 3.6 Deep-seated shear failure




Chapter Two Lateral Earth Pressure and Retaining Walls Dr. Abmed H. Abdulkareem

3.5 Check for Overturning

Figure 3.7 shows the forces acting on a cantilever and a gravity retaining wall, based
on the assumption that the Rankine active pressure is acting along a vertical plane AB
drawn through the heel of the structure. P, is the Rankine passive pressure; recall that
its magnitude is

— 1 2 !
B, = 5 pY2D* + 2¢c5,/Kp,D
where

7= unit weight of soil in front of the heel and under the base slab
K, = Rankine passive earth pressure coefficient 5 tan2s45 1 f92y2d
¢» , &, = cohesion and effective soil friction angle, respectively

The factor of safety against overturning about the toe—that is, about point C in
Figure 3.7—may be expressed as

>M
FS(overturning) = Z_MI: (3-2)

where
Y. M= sum of the moments of forces tending to overturn about point C

Y. M, = sum of the moments of forces tending to resist overturning about point C

The overturning moment is

s, - () (3)

Where P, = P,cosa

To calculate the resisting moment, ), My (neglecting P,), a table such as Table 3.1
can be prepared. The weight of the soil above the heel and the weight of the concrete
(or masonry) are both forces that contribute to the resisting moment. Note that the
force P, also contributes to the resisting moment. P, is the vertical component of the
active force P, , or

P, = P;sina
The moment of the force P, about C is

M, = B,B = P,sinaB (3-4)
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where B = width of the base slab.
Once ), My is known, the factor of safety can be calculated as

M+ M, + My+ M, + My + M, + M,

FS(Q\'cnuming} =

P,cosa(H'/3)

(3-5)

Figure 3.7 Check for overturning, assuming that the
Rankine pressure is valid



Chapter Two Lateral Earth Pressure and Retaining Walls Dr. Abmed H. Abdulkareem

Table 3.1 Procedure for Calculating ), My

Weight/unit Moment arm Moment

Section Area length of wall measured from C  about C
(1) (2) (3) (4) (5)
I A, W, =v X A, X, M,
2 A, W, =y X A, X> M,
3 A, W, = vy, X A; X, M,
4 A, W, =1vy.X A, X, M,
5 As Ws; = vy, X As X M
6 Ag We = 7. X Ag X M,
P B M,

2V 2 Mg

(Note: v, = unit weight of backfill
¥. = unit weight of concrete)

The usual minimum desirable value of the factor of safety with respect to
overturning is 2 to 3.

Some designers prefer to determine the factor of safety against overturning with the
formula

!M|+M2+M‘;+M_L+.M5+.Mh

FS (overtuming = -
(overturning ) !_-;” COSQ(H’(}‘B) o M,. (3 6)

3.6 Check for Sliding along the Base
The factor of safety against sliding may be expressed by the equation

YF
FS(stiging) = ﬁ (3-7)

where
Y. Fr = sum of the horizontal resisting forces
Y. F; = sum of the horizontal driving forces

Figure 3.8 indicates that the shear strength of the soil immediately below the base
slab may be represented as

s =o' tand’ + ¢,
where
8 = angle of friction between the soil and the base slab
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¢, = adhesion between the soil and the base slab

Thus, the maximum resisting force that can be derived from the soil per unit length of
the wall along the bottom of the base slab is

" = g(area of cross section) = s(B X 1) = Bo' tan §' + B,

However,
(see Table 3.1)

Bo' = sum of the vertical force = 2 V|

_._-—-—-—'__'_'_H_F-:ﬂ
| |
' Y
|
| N
| L2 |
i
1 |
sv |
]
|
—
|
r I
b | !
P, r
Iz .

Figure 3.8 Check for sliding along the base

Figure 3.8 shows that the passive force P, is also a horizontal resisting force. Hence,
by = N 1/ i [ o
P FR (Z ! )tdnﬁ + BCG + P}., (3-8)

The only horizontal force that will tend to cause the wall to slide (a driving force) is

the horizontal component of the active force P, , so
4 = P, cosa (3-9)
Combining Egs. (3.7), (3.8), and (3.9) yields

(%X V)tand' + Bc, + P,
FSL.\l]dmg] = = —lf (3‘10)

P, cosw

A minimum factor of safety of 1.5 against sliding is generally required.

In many cases, the passive force P, is ignored in calculating the factor of safety with
respect to sliding. In general, we can write S =k1(|)2' and ca'=k2c2'. In most cases, k; and
k, are in the range from 1/2 to 2/3. Thus,
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(2 V)tan (k) + Bkyc) + P,

FSisluling] =
P, cosa

(3-11)

______________ ! Use of a dead
¥ i man anchor

| Use of a

b |

D ey Base slab
I
|

[

[

| base key
L —

IJe:I‘j

I
|
o |

b=

Figure 3.9 Alternatives for increasing the factor of safety with respect to sliding

If the desired value of FSjiging) 1S not achieved, several alternatives may be
investigated (see Figure 3.9):

e Increase the width of the base slab (i.e., the heel of the footing).

e Use a key to the base slab. If a key is included, the passive force per unit length of
the wall becomes

1 2
P, = >7.DiK, + 2c¢5DVK,

where KP = lz1n3(45 + —(g—:)

e Use a deadman anchor at the stem of the retaining wall.
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3.7 Check for Bearing Capacity Failure

The vertical pressure transmitted to the soil by the base slab of the retaining wall
should be checked against the ultimate bearing capacity of the soil. The nature of
variation of the vertical pressure transmitted by the base slab into the soil is shown in
Figure 3.11. Note that g and gpne are the maximum and the minimum pressures
occurring at the ends of the toe and heel sections, respectively. The magnitudes of gioe
and gpeel can be determined in the following manner:

The sum of the vertical forces acting on the base slab is ), V (see column 3 of Table
3.1), and the horizontal force P, is P, cosa. Let

R=V+P, (3-12)
be the resultant force. The net moment of these forces about point C in Figure 3.11 is

M,y = SMp —3M, 1)

Note that the values of ), My and ), M, were previously determined. [See Column 5
of Table 3.1 and Eq. (3.3)]. Let the line of action of the resultant R intersect the base
slab at E. Then the distance

ﬁ—?—*M‘“ 3-14
I ) 74 (3-14)

Fy=F, cos
. —

Figure 3.11 Check for bearing capacity failure
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Hence, the eccentricity of the resultant R may be expressed as

B S
e=-—CE (3.15)
The pressure distribution under the base slab may be determined by using simple
principles from the mechanics of materials. First, we have

_ XV My

1=74 I

(3.16)

where
M,ee =moment =( ), V)e
[ = moment of inertia per unit length of the base section = 1/12(1)(B?)

For maximum and minimum pressures, the value of y in Eq. (3.16) equals B/2.
Substituting into Eq. (3.16) gives

N -
iV "(W)E 3V 6e
(fltulx:qfnq::(B){]) +—i—=?(l+5) (317)
(o
Similarly
= (1)
Griin Theel B B (3 ) 1 8)

Note that )} VV includes the weight of the soil, as shown in Table 3.1, and that when
the value of the eccentricity e becomes greater than B/6, gmin [Eq. (3.18)] becomes
negative. Thus, there will be some tensile stress at the end of the heel section. This
stress 1s not desirable, because the tensile strength of soil is very small. If the analysis
of a design shows that e . B/6, the design should be reproportioned and calculations
redone. The relationships pertaining to the ultimate bearing capacity of a shallow
foundation were discussed in previous Chapter . Recall that
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qu = CéNch‘dEf ¥ qM}Fq(J'F:;r' * %?ZBFNyFdeyE (319)
where
q = v,D
B'=B —2e
(e Ed
b= B~ 5
¢ 7N, tan
’ * r 7D
Fog =1+ 2tan (1 — smqb;)“E
Fn’ =1

o \?
F,=F,=(1-
= {13
e\
FT!‘Z(I_ ;o)

P, cosa
o =t | a
U an ( Sy )

Note that the shape factors F, , Fis , and F'); given in previous Chapter are all equal
to unity, because they can be treated as a continuous foundation. For this reason, the
shape factors are not shown in Eq. (13.19).

Once the ultimate bearing capacity of the soil has been calculated by using
Eq. (13.19), the factor of safety against bearing capacity failure can be determined:

qu

o (3.20)

Generally, a factor of safety of 3 is required. We noted that the ultimate bearing
capacity of shallow foundations occurs at a settlement of about 10% of the foundation
width. In the case of retaining walls, the width B is large. Hence, the ultimate load ¢,
will occur at a fairly large foundation settlement. A factor of safety of 3 against
bearing capacity failure may not ensure that settlement of the structure will be within
the tolerable limit in all cases. Thus, this situation needs further investigation.

FS,

bearing capacity ) =

Example 1
Example 2
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3.8 Construction Joints and Drainage from Backfill

Construction Joints

A retaining wall may be constructed with one or more of the following joints:

1. Construction joints (see Figure 3.12a) are vertical and horizontal joints that are
placed between two successive pours of concrete. To increase the shear at the
joints, keys may be used. If keys are not used, the surface of the first pour is
cleaned and roughened before the next pour of concrete.

2. Contraction joints (Figure 3.12b) are vertical joints (grooves) placed in the face of
a wall (from the top of the base slab to the top of the wall) that allow the concrete
to shrink without noticeable harm. The grooves may be about 6 to 8 mm wide and
12 to 16 mm deep.

3. Expansion joints (Figure 3.12¢) allow for the expansion of concrete caused by
temperature changes; vertical expansion joints from the base to the top of the wall
may also be used. These joints may be filled with flexible joint fillers. In most
cases, horizontal reinforcing steel bars running across the stem are continuous
through all joints. The steel is greased to allow the concrete to expand.

Roughened
surface

Keys

(a)

Back of wall Back of wall

! |

g o

Contraction T T

joint Face of wall Expansion  Face of
joint wall
(b) ()

Figure 3.12 (a) Construction joints; (b) contraction joint; (¢) expansion joint
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Drainage from the Backfill

As the result of rainfall or other wet conditions, the backfill material for a retaining
wall may become saturated, thereby increasing the pressure on the wall and perhaps
creating an unstable condition. For this reason, adequate drainage must be provided
by means of weep holes or perforated drainage pipes. (See Figure 3.13.)

When provided, weep holes should have a minimum diameter of about 0.1 m and be
adequately spaced. Note that there is always a possibility that backfill material may
be washed into weep holes or drainage pipes and ultimately clog them. Thus, a filter
conductivity (in this case, the backfill material). The preceding conditions can be
satisfied if the following requirements are met (Terzaghi and Peck, 1967):

Pist) 5 [¢0 satisfy condition(a)] (3.21)
Dgs(B)

Pis) - 4 [to satisfy condition(b)] (3.22)

Di5(B)

In these relations, the subscripts F and B refer to the filter and the base material (i.e.,
the backfill soil), respectively. Also, D5 and Dgs refer to the diameters through which
15% and 85% of the soil (filter or base, as the case may be) will pass. Example 3.3
gives the procedure for designing a filter.

2 /—

Weep hole Filter material Filter material

),:‘1'::'%-/ S '1’./ Perforated pipe

(a) (b)

Figure 3.13 Drainage provisions for the backfill of a retaining wall: (a) by weep
holes; (b) by a perforated drainage pipe
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4.1. Introduction
Connected or semi-connected sheet piles are often used to build continuous walls

for waterfront structures that range from small waterfront pleasure boat launching
facilities to large dock facilities. (See Figure 4.1). In contrast to the construction of
other types of retaining wall, the building of sheet-pile walls does not usually require
dewatering of the site. Sheet piles are also used for some temporary structures, such
as braced cuts. (See Chapter 5). The principles of sheet-pile wall design are discussed
in the current chapter.

Several types of sheet pile are commonly used in construction:

(a) wooden sheet piles,

(b) precast concrete sheet piles, and

(c) steel sheet piles.

Aluminum sheet piles are also marketed.

(a) Wooden sheet piles are used only for temporary, light structures that are above the
water table. The most common types are ordinary wooden planks and Wakefield
piles. The wooden planks are about 50 mm % 300 mm (2 in. X 12 in.) in cross section
and are driven edge to edge (Figure 4.2a). Wakefield piles are made by nailing three
planks together, with the middle plank offset by 50 to 75 mm (2 to 3 in.) (Figure
4.2b). Wooden planks can also be milled to form tongue-and-groove piles, as shown
in Figure 4.2¢. Figure 4.2d shows another type of wooden sheet pile that has precut
grooves. Metal splines are driven into the grooves of the adjacent sheetings to hold

them together after they are sunk into the ground.

Water
avle 4 B 4 Water table
Sheet
pile = Land side
Dredge line

Figure 4.1 Example of waterfront sheet-pile wall.
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Wooden Sheet Piles Precast Concrete Sheet Pile

(a) Planks

Concrete Section

grout [ 500-800 mm >

i
|
o
|
==
' —
|
) A |

|_TT_T_‘_T'!'”I_"T_7_I

| Y5

(d) Splined piles (e)

(not to scale)

Figure 4.2 Various types of wooden and concrete sheet pile

Precast concrete sheet piles are heavy and are designed with reinforcements to
withstand the permanent stresses to which the structure will be subjected after
construction and also to handle the stresses produced during construction. In cross
section, these piles are about 500 to 800 mm (20 to 32 in.) wide and 150 to 250 mm
(6 to 10 in.) thick. Figure 4.2¢ is a schematic diagram of the elevation and the cross
section of a reinforced concrete sheet pile.

Steel sheet piles in the United States are about 10 to 13 mm (0.4 to 0.5 in.) thick.
European sections may be thinner and wider. Sheet-pile sections may be Z, deep
arch, low arch, or straight web sections. The interlocks of the sheet-pile sections are
shaped like a thumb-and-finger or ball-and-socket joint for watertight connections.
Figure 4.3a is a schematic diagram of the thumb-and-finger type of interlocking for
straight web sections. The ball-and-socket type of interlocking for Z section piles is
shown in Figure 4.3b. Figure 4.4 shows some sheet piles at a construction site. Figure
4.5 shows a small enclosure with steel sheet piles for an excavation work. Table 4.1
lists the properties of the steel sheet-pile sections produced by Hammer & Steel, Inc.
of Hazelwood, Missouri. The allowable design flexural stress for the steel sheet piles
is as follows:

Type of steel Allowable stress
ASTM A-328 170 MN/m? (25,000 Ib/in?)
ASTM A-572 210 MN/m”? (30,000 Ib/in?)

ASTM A-690 210 MN/m? (30,000 1b/in?)
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A B¢

(a)

(b)
Figure 4.3 (a) Thumb-and-finger type sheet-pile connection; (b) ball-and-socket type
sheet-pile connection

-~

Figure 4.4 Some steel sheet piles at a construction site (Courtesy of N. Sivakugan,
James Cook University, Australia)

Figure 4.5 A small enclosure with steel sheet piles for an excavation work (Courtesy
of N. Sivakugan, James Cook University, Australia)



Chapter FOLR Sheet Pile Walls Dr. Ahmed H. Abdulkareem

Table 4.1 Properties of Some Sheet-Pile Sections Production by Bethlehem Steel

Corporation
Section modulus Moment of inertia
LS . m?/m in®/ft m*/m in'/ft
Nation Sketch of section of wall of wall of wall of wall

3264 x 1077 607 670.5 % 10°% 4908

12,7 mm (0.51in.)

15.2 mm (0.6 in.)

1 l«— Driving distance = 500 mm (19.69 in.) —»|

PZ-35

. = T
2605 % 107 485 4934 x 190 3612
12,7 mm (0.5 in.)
379 mm
(14.0 in.)
15.2 mm (0.6in.)
L |«— Driving distance = 575 mm (22.64 in.) —>
PZ-27 'y 1623 x 1075 302 2515 X 107° 1842
, 3.
9.53 mm ( g in.)
304.8 mm
(12in.) 3
953 mm (3 in.)
8
Y l«— Driving distance = 457.2 mm (18in.) —»
PZ-22 'y 97 X 10— 18.1 1152 x 10" 844
9.53 mm ( J in.)
8
228.6 mm
(9in.) 3
953 mm (5 in.)
Y. l«— Driving distance = 558.8 mm (22 in.) —»
- , ' 323
PSA-31 oo k.. 10.8 x 10~ 2.01 441 x 10
12.7 mm {2 in.)
|*— Driving distance = 500 mm (19.7 in.}) —
. ; ~5 AL
PSA-23 8. 128 x 107° 2.4 5.63 x 10
9.53 mm ( " in.)

S S m—

f«— Driving distance = 406.4 mm (16 in,) — /
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4.2 Construction Methods
Sheet-pile walls may be divided into two basic categories:

(a) cantilever and
(b) anchored.

In the construction of sheet-pile walls, the sheet pile may be driven into the ground
and then the backfill placed on the land side, or the sheet pile may first be driven into
the ground and the soil in front of the sheet pile dredged. In either case, the soil used
for backfill behind the sheet-pile wall is usually granular. The soil below the dredge
line may be sandy or clayey. The surface of soil on the water side is referred to as the
mud line or dredge line.

Thus, construction methods generally can be divided into two categories (Tsinker,
1983):

1. Backfilled structure

2. Dredged structure

The sequence of construction for a backfilled structure is as follows (see Figure
4.6):

Step 1. Dredge the in situ soil in front and back of the proposed structure.
Step 2. Drive the sheet piles.

Step 3. Backfill up to the level of the anchor, and place the anchor system.
Step 4. Backfill up to the top of the wall.

Original
ground
surface

line

Step 1 Step 2

Anchor
rod

Step 3 Step 4

Figure 4.6 Sequence of construction for a backfilled structure
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For a cantilever type of wall, only Steps 1, 2, and 4 apply. The sequence of
construction for a dredged structure is as follows (see Figure 4.7):

Step 1. Drive the sheet piles.

Step 2. Backfill up to the anchor level, and place the anchor system.

Step 3. Backfill up to the top of the wall.

Step 4. Dredge the front side of the wall.

With cantilever sheet-pile walls, Step 2 is not required.

Anchor
Original I
ground R PEA
surface . Backfill &
Step | Step 2
Dredge
Step 3 Step 4

Figure 4.7 Sequence of construction for a dredged structure
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4.3 Cantilever Sheet-Pile Walls

Cantilever sheet-pile walls are usually recommended for walls of moderate height—
about 6 m or less, measured above the dredge line. In such walls, the sheet piles act
as a wide cantilever beam above the dredge line. The basic principles for estimating
net lateral pressure distribution on a cantilever sheet-pile wall can be explained with
the aid of Figure 4.8. The figure shows the nature of lateral yielding of a cantilever
wall penetrating sand layer below the dredge line. The wall rotates about point O
(Figure 4.8a). Because the hydrostatic pressures at any depth from both sides of the
wall will cancel each other, we consider only the effective lateral soil pressures. In
zone A, the lateral pressure is just the active pressure from the land side. In zone B,
because of the nature of yielding of the wall, there will be active pressure from the
land side and passive pressure from the water side. The condition is reversed in zone
(C—that is, below the point of rotation, O. The net actual pressure distribution on the
wall is like that shown in Figure 4.8b. However, for design purposes, Figure 4.8c
shows a simplified version.

Sections 4.4 through 4.7 present the mathematical formulation of the analysis of
cantilever sheet-pile walls. Note that, in some waterfront structures, the water level

may fluctuate as the result of tidal effects. Care should be taken in determining the
water level that will affect the net pressure diagram.

T
|
Water |
table \1
_J____‘l_ i R | e M ST O, R 2 AN ) G T,
— | — — e — s
I
'I Zone A
| Active
\ A
|| pressure Sand
| . =
5 i |
Dredge |
line I
DRSS
: ) A 07 i e T o [ e e
Passive | Active |
pressure ||| pressure  Zone B ]
\ =
0 *
Active Passive s C Sand ~
\ me : ~
pressure | pressure B s s \
. _v < ~
(a) (b)

(c)

Figure 4.8 Cantilever sheet pile penetrating sand
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4.4 Cantilever Sheet Piling Penetrating Sandy Soils

To develop the relationships for the proper depth of embedment of sheet piles driven
into a granular soil, examine Figure 4.9a. The soil retained by the sheet piling above
the dredge line also is sand. The water table is at a depth L; below the top of the wall.
Let the effective angle of friction of the sand be ¢ . The intensity of the active
pressure at a depth z =L, is

o1 = yL1K, (4.1)

where
!
K, = Rankine active pressure coefficient = tan?(45 — %)

v = unit weight of soil above the water table

Sand
) Y
Water &'
_____ y lable .. )
= Sand
}’\m
¢’
('r = 0
P
Dredge line
———— Y v § 2 M
3 Slope:
1 vertical:
(K, - Ky
B - o horizontal
Ly ? p Sand
] E Yat
g ,l I '
. . ; G ¢'=0

(b)

Figure 4.9 Cantilever sheet pile penetrating sand: (a) variation of net pressure
diagram; (b) variation of moment

Similarly, the active pressure at a depth z =L, + L, (i.e., at the level of the dredge
line) is

(T_:_r = (‘Y[‘i £ ‘},JLI ) Kﬁ' (42)
where y = effective unit weight of s0il =Ysa - Yu -
Note that, at the level of the dredge line, the hydrostatic pressures from both sides of



Chapter FOLR Sheet Pile Walls Dr. Ahmed H. Abdulkareem

the wall are the same magnitude and cancel each other.

To determine the net lateral pressure below the dredge line up to the point of
rotation, O, as shown in Figure 4.8a, an engineer has to consider the passive pressure
acting from the left side (the water side) toward the right side (the land side) of the
wall and also the active pressure acting from the right side toward the left side of the
wall. For such cases, ignoring the hydrostatic pressure from both sides of the wall, the
active pressure at depth z is

o=yl +yL+y(z— L —L)K, (43)
Also, the passive pressure at depth z is

(T;, = }"(Z = L| =7 [-E)Kp (44)

where K, = Rankine passive pressure coefficient = tan® (45 + %)

Combining Eqgs. (4.3) and (4.4) yields the net lateral pressure, namely,
U-’ = U-:J = U;J = (F}"l*l + ‘)"LE)KH . 'YF(Z T - Ll - L:) (Kln - ]\} (45)

= oy~ y'(z- L) (K, - K,)
where L = L, + L,. The net pressure, o equals zero at a depth L3 below the dredge
line, so

(Té - ..y'(&' - L) (Kp - Krl) =4

or

r
g,

(2= L)=ly= Y (K, - K,) (4.6)

Equation (4.6) indicates that the slope of the net pressure distribution line DEF is 1
vertical to (K, — K,,) v horizontal, so, in the pressure diagram,

B = U;. = L-l(Kp - K”)'}” (47)
At the bottom of the sheet pile, passive pressure, & » » acts from the right toward the
left side, and active pressure acts from the left toward the right side of the sheet pile,
so,atz= L+ D,

U:" . (‘)/Ll i -}’rLZ + ‘}"D)Kp (48)

At the same depth,
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o, =y DK, (4.9)

Hence, the net lateral pressure at the bottom of the sheet pile is
0-;: == U':: = U; = ('}’L[ : 7’L2)Kp ¥ Y;D(Kp - Ku)
= (yLy + YLK, + Y Ly(K, = K,) + ¥'Ly(K, - K,)

= oL + y'Ly(K, — K,) (4.10)

Where
U; = (‘)’LI iz ’V’LE)K]) b Y'LB(K;J o Kﬁ) (4.11)
D=1L;+ L, (4.12)

For the stability of the wall, the principles of statics can now be applied:
2. horizontal forces per unit length of wall = 0

and
2. moment of the forces per unit length of wall about point B =0
For the summation of the horizontal forces, we have
Area of the pressure diagram ACDE - area of EFHB + area of FHBG =0

Or
P = sobLy # slelod + @) =0 (4.13)

where P = area of the pressure diagram ACDE.
Summing the moment of all the forces about point B yields

P(L, + %) — (:[EL,,U;)(%) + %r.s(g; + (ﬂ)(%) =0 (4.14)

From Eq.(4.13)

oiL, — 2P
o + o} (4.15)

L:-,:

Combining Egs. (4.7), (4.10), (4.14), and (4.15) and simplifying them further, we
obtain the following fourth-degree equation in terms of L, :
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Lj = A|I_«i o AzLE o A3L4 = A4 P 0

In this equation

A

Agz

As

Il

(4.16)
i as 4.17)
yr(Kp i Ka)
8P (4.18)
yf(Kp 250 Ka)
P[2zy'(K, — K,) + o}] (4.19)
V’Z(Kp al Ka)2
P(6__Ecr;, + 4P) (4.20)

'}"Z(Kp i a)z

Step-by-Step Procedure for Obtaining the Pressure Diagram

Based on the preceding theory, a step-by-step procedure for obtaining the pressure
diagram for a cantilever sheet-pile wall penetrating a granular soil is as follows:

Step 1. Calculate K, and K, .

Step 2. Calculate | [Eq. (4.1)] and o> [Eq. (4.2)]. (Note: L, and L, will
be given.)

Step 3. Calculate L5 [Eq. (4.6)].

Step 4. Calculate P.

Step 5. Calculate z (i.e., the center of pressure for the area ACDE) by
taking the moment about E.

Step 6. Calculate o5 [Eq. (4.11)].

Step 7. Calculate 4, , A, , A5 , and A4 [Eqgs. (4.17) through (4.20)].

Step 8. Solve Eq. (4.16) by trial and error to determine L, .

Step 9. Calculate o4 [Eq. (4.10)].

Step 10. Calculate o5 [Eq. (4.7)].

Step 11. Obtain Ls from Eq. (4.15).

Step 12. Draw a pressure distribution diagram like the one shown in

Figure 4.9a.
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Step 13. Obtain the theoretical depth [see Eq. (4.12)] of penetration as
L; + L4. The actual depth of penetration is increased by about 20
to 30%.

Note that some designers prefer to use a factor of safety on the passive earth
pressure coefficient at the beginning. In that case, in Step 1,

— If]
KP{ design) FS

where FS = factor of safety (usually between 1.5 and 2).

For this type of analysis, follow Steps 1 through 12 with the value of K,=

tan®(45 — %) and K gesign) (instead of K)). The actual depth of penetration can now
be determined by adding L; , obtained from Step 3, and L4 , obtained from Step 8.

Calculation of Maximum Bending Moment

The nature of the variation of the moment diagram for a cantilever sheet-pile wall is
shown in Figure 4.9b. The maximum moment will occur between points £ and F.
Obtaining the maximum moment (M) per unit length of the wall requires
determining the point of zero shear. For a new axis z (with origin at point E) for zero
shear,

Fr=gla P, ~ By

Or

I |

,_ | 2P
\/(Kp - K)y' (4.21)

Once the point of zero shear force is determined (point F in Figure 4.9a), the
magnitude of the maximum moment can be obtained as

Mux = P(Z + 2') — GyY'2%(K, - K)I®)z' (4.22)

The necessary profile of the sheet piling is then sized according to the allowable
flexural stress of the sheet pile material, or

M

max

= o (4.23)
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where
S = section modulus of the sheet pile required per unit length of the structure
o1 = allowable flexural stress of the sheet pile

Example 4.1
Figure 4.10 shows a cantilever sheet-pile wall penetrating a granular soil. Here,
Li=2m, L,=3m, y= 159 kN/m’, y o= 19.33 kN/m’, and ¢= 32°.
a. What is the theoretical depth of embedment, D?
b. For a 30% increase in D, what should be the total length of the sheet piles?
c. What should be the minimum section modulus of the sheet piles?
Use o,4=172 MN/m’.

Water table

Dredge line

Figure 4.10 Cantilever sheet-pile wall

Part a
Using Figure 4.9a for the pressure distribution diagram, one can now
prepare the following table for a step-by-step calculation.
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Quantity Eq.
required no. Equation and calculation
K, —_ tan2(45 — %) = tan2(45 - ;ZE) = 0.307
j 2
K, s tan2(45 - %) = tan2(45 - 3?) ='3.25
o/ 9.1 vyL,K, = (15.9)(2)(0.307) = 9.763 kN/m*
oy 92 (L, + YLK, = [(159)2) + (19.33 — 9.81)(3)](0.307) = 18.53 kN/m*
o 18.53
9.6 = = (.66 m
L y(K, — K,) _ (1933 — 9.81)(325 — 0.307) i
P s 3oiLy + oL, + 3(03 — a1) L, + 30514
= (1)(9.763)(2) + (9.763)(3) + (3)(18.53 — 9.763)(3)
+ (3)(18.53) (0.66)
= 0.763 + 29.289 + 13.151 + 6.115 = 58.32 kN/m
i SM; |_9763(066+3 +3) +29.289(0.66 +3) | _ 223 m
: P 5332L+ 13.151(0.66 + 3) + 6.115(0.66 X %)
5
o 9.11 (YL, + YLK, + YLK, — K,) = [(15.9)(2) + (19.33 — 9.81)(3)32)
+ (19.33 — 9.81)(0.66)(3.25
— 0.307) = 214.66 kN/m’
Tl 214.66
A i YK, — K (1933 = 9.81)(325 — 0.307)
8P (8)(58.32) _.-
2 . ]6.65 |
3 A8 Y (K, — K,) (1933 — 9.81)(3.25 — 0.307) 1
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A ) 6P[2zy' (K, — K,) + o]
3 19 ,yrz(Kp 2 KR)E
(6)(58.32)[(2)(2.23)(19.33 — 9.81)(3.25 — 0.307) + 214.66)
. (19.33 — 9.81)%(3.25 — 0.307)>
= 151.93
Y oq F(6705+4P) _ 5832((6)(2.23)(214.66) + (4)(58.32)]
¥ ' Y (K, — K,)? (19.33 — 9.81)%(3.25 — 0.307)>
= 230.72
i 9.16 LI+ALi—Adli-AL,—A, =0
L; + 7.66L; — 16.65L3 — 151.93L, — 230.72 = 0; L, ~ 4.8 m
Thus,
Dthenry =3 L3 + L4 — 0.66 + 48 — 5.46 m
Part b

The total length of the sheet piles is
Li+L+ 13y +L)=2+3+13546)=12.1m

Part ¢

Finally, we have the following table.

Quantity Eq.
required no.

Equation and calculation

3 9.21
M,.. 9.22
S 9.29

\/ 2P < \/ (2)(58.32) S
(K,-K)y N (325-0307)(1933 —981) - '™

!

P(z+7) - By’z'z(Kp ~ Ka)]% = (58.32)(2.23 + 2.04)

1 .
- [(5)(19.33 —9.81)(2.04)%(3.25 — 0.307)}%5
= 209.39 kN-m/m
M,  209.39kN-m

Ta 172 X 10° kN/m?

= 1217 X 10 *m’/mofwall =
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4.5 Cantilever Sheet Piling Penetrating Clay

At times, cantilever sheet piles must be driven into a clay layer possessing an
undrained cohesion (¢p=0). The net pressure diagram will be somewhat different from
that shown in Figure 4.9a. Figure 4.13 shows a cantilever sheet-pile wall driven into
clay with a backfill of granular soil above the level of the dredge line. The water table
is at a depth L, below the top of the wall. As before, Egs. (4.1) and (4.2) give the
intensity of the net pressures o, and o, , and the diagram for pressure distribution
above the level of the dredge line can be drawn. The diagram for net pressure
distribution below the dredge line can now be determined as follows.

I —

Dredge line ; l

_.B. e

Figure 4.13 Cantilever sheet pile penetrating clay

At any depth greater than L, + L, , for ¢=0, the Rankine active earth-pressure
coefficient K,= 1. Similarly, for ¢=0, the Rankine passive earth-pressure coefficient
K,=1. Thus, above the point of rotation (point O in Figure 4.8a), the active pressure,
from right to left is

T, = ['}’LI + 5 Ls ']’ml(z — Ly — LE)] = 2¢ (4-24)

Similarly, the passive pressure from left to right may be expressed as

Crp = ‘)ISEH.(Z o Ll - LE) + 2¢ (4.25)
Thus, the net pressure is
Tg =g — O, = [')’aut(z o LI - LE) + ZC]
- [‘}‘Ll * ‘}’PL'_"' i g —y\‘,;ti(z == Ll - l‘l)] + 2C
=dc = (vLi +v'Ly) (4.26)
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At the bottom of the sheet pile, the passive pressure from right to left is
a, = ('}’L] T '}’rLZ + '}".-;aLD) + 2¢ (427)

Similarly, the active pressure from left to right is
(Tu - ysatD o 2(‘ (428)

Hence, the net pressure is
3= O-p — oy = dc + (‘}’L} ¥ '}’PLZ) (429)

For equilibrium analysis, 2. F = 0; that is, the area of the pressure diagram ACDE
minus the area of EFIB plus the area of GIH = 0, or

P, —[4c — (yL, + YFLJ)]D * %L4[4C — (YL, + ¥'Ly) + 4c + (yL, 4 y‘[_:)]

=4

where P, = area of the pressure diagram ACDE.

Simplifying the preceding equation produces

= 4c (4.30)
Now, taking the moment about point B (2M3 =0) yields

- D* 1 E
P (D +z,) — [4c = (YL, + Y'Lp)] 5+ ;L4(8C‘_)(_4) =9
2 2 3 (4.31)

where z; = distance of the center of pressure of the pressure diagram ACDE,
measured from the level of the dredge line.
Combining Egs. (4.30) and (4.31) yields

P (P + 12¢7;)

02[40 et (YLI + '))’LE)] o 2DP1 e (’YL] + ')"’Lg) + 2¢ =0 (4.32)

Equation (4.32) may be solved to obtain D, the theoretical depth of penetration of the
clay layer by the sheet pile.

Step-by-Step Procedure for Obtaining the Pressure Diagram

Step 1. Calculate K, for the granular soil (backfill).

Step 2. Obtain 6, and o, . [See Egs. (4.1) and (4.2).]
Step 3. Calculate P, and z; .

Step 4. Use Eq. (4.32) to obtain the theoretical value of D.
Step 5. Using Eq. (4.30), calculate L,.

Step 6. Calculate 4 and o7 . [See Egs. (4.26) and (4.29).]
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Step 7. Draw the pressure distribution diagram as shown in Figure 4.13.
Step 8. The actual depth of penetration is

D‘dcwal = 14 to 1'6(Dlhcuretical)

Maximum Bending Moment

According to Figure 4.13, the maximum moment (zero shear) will be between L, +
L,<z <L+ L,+Ls. Using a new coordinate system z9 (with z = 0 at the dredge
line) for zero shear gives

P—osz’ =0
or

!
<

_ A

Tg

(4.33)

The magnitude of the maximum moment may now be obtained:

O_sz

Mmax = P](Z' ks El) i 2 (434)

Knowing the maximum bending moment, we determine the section modulus of the
sheet-pile section from Eq. (4.23).

Example 4.2:
In Figure 4.14, for the sheet-pile wall, determine
a. The theoretical and actual depth of penetration. Use Dycruat = 1.5Dineory -
b. The minimum size of sheet-pile section necessary. Use oy = 172.5 MN/m’.

A T Sand
=) - 5
L,=2m tj}:‘ : 55.9 kN/m
Wawruble g ___i________z__________‘b_szo
Sand
Ve = 19.33 kN/m?

¥ sat
]

Ly=3m

¢’ =47 kN/m’

Figure 4.14 Cantilever sheet pile penetrating into saturated clay
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Solution

We will follow the step-by-step procedure given in Section 9.6:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

K, = tan3(45 - %) = tan2(45 ~ 323) = 0.307

oy = yL,K, = (15.9)(2)(0.307) = 9.763 kN/m?
03 = (yLy + y'Ly) K, = [(15.9)(2) + (19.33 — 9.81)3]0.307
= 18.53 kN/m?

From the net pressure distribution diagram given in Figure 9.12, we haye

1 1

= 9.763 + 29.289 + 13.151 = 52.2 kN/m

and

b A4 2 3 3
2= 52_2[9.763(3 + 3) ¥ 29.289(2) i 13.151(3)]

= 1.78 m
From Eq. (9.48),

P(P +12c%)
(YL, + y'L,) +2¢

D%4c — (yL, + y'L,)] — 2DP, —

Substituting proper values yields

D*{(4)(47) — [(2)(15.9) + (19.33 — 9.81)3]} — 2D(52.2)
52.2[52.2 + (12)(47)(1.78)] =
T [(159)(2) + (1933 — 9.81)3] + (2)(47)

or

127.64D* — 104.4D — 357.15=0

Solving the preceding equation, we obtain D = 2.13 m.
From Eq. (9.46),

D[4c — (yL, + y'L,)] — P,
4c

L4=

and

de — (YLy + y'Ly) = (4)(47) — [(15.9)(2) + (19.33 — 9.81)3]
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So,
_ 213(127.64) — 52.2 _
: (4)(47)

1.17 m

Step 6.
06 =4c — (yL, + y'L;) = 127.64 kN/m’
o7 =4c + (yL, + y'L;) = 248.36 kN/m?

Step 7. The net pressure distribution diagram can now be drawn, as shown in
Figure 9.12.
Step 8. Dynuat = 1.5Dpeorericas = 1.5(2.13) = 3.2 m

Maximum-Moment Calculation
From Eq. (9.49),

Z =§;:T%*0.41m
Again, from Eq. (9.49),
My = Pz’ + 7)) — "6;'2
So
Mo = 52.2(0.41 + 1.78) — 127'“50-41)2

= 114.32 — 10.73 = 103.59 kN-m/m
The minimum required section modulus (assuming that o, = 172.5 MN /m?) is

103.59 kN-m/m
8= i > = 0.6 X 107 m*/m of the wall I
172.5 X 10° kN/m?
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Chapter FOR
4.6 Anchored Sheet-Pile Walls

When the height of the backfill material behind a cantilever sheet-pile wall exceeds
about 6 m, tying the wall near the top to anchor plates, anchor walls, or anchor piles
becomes more economical. This type of construction is referred to as anchored
sheet-pile wall or an anchored bulkhead. Anchors minimize the depth of penetration
required by the sheet piles and also reduce the cross-sectional area and weight of the
sheet piles needed for construction. However, the tie rods and anchors must be

carefully designed.
The two basic methods of designing anchored sheet-pile walls are

(a) the free earth support method and

(b) the fixed earth support method.

Figure 4.17 shows the assumed nature of deflection of the sheet piles for the two
methods.

The free earth support method involves a minimum penetration depth. Below the
dredge line, no pivot point exists for the static system. The nature of the variation of
the bending moment with depth for both methods is also shown in Figure 4.17. Note

that
DI ree earth < '{)lm.-tl earth
| Anchor tie rod
— e e
Water 4, H . ¥

Moment

1 [ Sheet pile
L “ simply supported

Moment
. I max
Deflection ‘-'
I
1
s |
Dredge line \
(] T = P
\
\
v

D A
‘ { Sheet pile fixed
8. / '

(b)
Figure 4.17 Nature of variation of deflection and moment for anchored sheet piles:
(a) free earth support method (b) fixed earth support method
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4.7 Free Earth Support Method for Penetration of Sandy Soil

Figure 4.18 shows an anchor sheet-pile wall with a granular soil backfill; the wall
has been driven into a granular soil. The tie rod connecting the sheet pile and the
anchor is located at a depth /1 below the top of the sheet-pile wall.

The diagram of the net pressure distribution above the dredge line is similar to that
shown in Figure 4.9. Atdepthz=1L,, o=yl K,,and atz =L, + L, , 6'5= (yL, +
vL,)K, . Below the dredge line, the net pressure will be zero at z + L; + L, + Ls. The
relation for Lj is given by Eq. (4.6), or

Y
1)
Anchor tie rod ¥
Iy

Water _ Water & Sand
ccsm e g BUING mble , ¥ 1 B¥
4
L,
T P
; Sand
Yearr @
Dredge line v . _3_ B I"-. D
[ [ g e A R R S e e
A
L; =l
R i T'_; ________
> Sand
.{j / 7~ i £
] 5 YK, -K) Veurs P
" & !,-_
F = Y ¥
r B

Figure 4.18 Anchored sheet-pile wall penetrating sand
Atz=L,+ L, + L3 + L4, the net pressure is given by
o=y (K, — K,) L4 (4.35)

Note that the slope of the line DEF is 1 vertical to y'(Kp - K,) horizontal. For
equilibrium of the sheet pile, Y, horizontal forces = 0, and Y, moment about O= 0.
(Note: Point O is located at the level of the tie rod.)

Summing the forces in the horizontal direction (per unit length of the wall) gives

Area of the pressure diagram ACDE - area of EBF - F=0
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where F'=5 tension in the tie rod/unit length of the wall, or
P—zolly—F=0

or

F =P -y (K, - K)IL3 (4.36)

where P = area of the pressure diagram 4CDE.
Now, taking the moment about point O gives

—P[(Li + L, + Ly) — @+ W)+ 3[v' (K, - K)W3(h + Ly + Ly + 3Ly) =0

Or
BP[(LI + Ly + Ly) — {2+ 11)}

YK K,

Li+15L5(L + L, + L;) — =0 (437

Equation (4.37) may be solved by trial and error to determine the theoretical depth,
L4:
Dtheoretical = L3 + L4

The theoretical depth is increased by about 30 to 40% for actual construction, or
Dactual =13to 14 Dtheoretical (43 8)

The step-by-step procedure in Section 4.4 indicated that a factor of safety can be
applied to K, at the beginning [i.e., K,(esigna) = K,/FS]. If that is done, there is no need
to increase the theoretical depth by 30 to 40%. This approach is often more
conservative.

The maximum theoretical moment to which the sheet pile will be subjected occurs
at a depth between z = L, and z = L; + L, . The depth z for zero shear and hence
maximum moment may be evaluated from

oL, — F+oj(z— L) +iKy'(z=L)*=0 (4.39)

Once the value of z is determined, the magnitude of the maximum moment is easily
obtained.
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4.8 Moment Reduction for Anchored Sheet-Pile

Walls Penetrating into Sand Sheet piles are flexible, and hence sheet-pile walls yield
(i.e., become displaced laterally), which redistributes the lateral earth pressure. This
change tends to reduce the maximum bending moment, M., , as calculated by the
procedure outlined in Section 4.7. For that reason, Rowe (1952, 1957) suggested a
procedure for reducing the maximum design moment on the sheet-pile walls obtained
from the free earth support method. This section discusses the procedure of moment
reduction for sheet piles penetrating into sand.

In Figure 4.25, which is valid for the case of a sheet pile penetrating sand, the
following notation is used:

1.0

Sate H =L+ Ly

0.8 H

section

0.6
Dense sand
and gravel

0.4 4

Unsafe section

Stiff Flexible
o piles piles |

0 T T T |
—4.,0 —3.5 =) ' S -20

Log p
Figure 4.25 Plot of log p against M,; /M, for sheet-pile walls penetrating sand (after,
’ P. W. (1952).
1. H =5 total height of pile driven (i.e., L1+ Ly + Dacral)

o4
2. Relative flexibility of pile = p = 10.91 X 10'?(%) (4.40)

where

H is in meters

E = modulus of elasticity of the pile material (MN/ m?)

I = moment of inertia of the pile section per meter of the wall (m*/m of wall)
3. M, = design moment

4. M.« = maximum theoretical moment

The procedure for the use of the moment reduction diagram (see Figure 4.25) is
as follows:
Step 1. Choose a sheet-pile section (e.g., from among those given in Table 4.1).
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Step 2. Find the modulus S of the selected section (Step 1) per unit length of the wall.

Step 3. Determine the moment of inertia of the section (Step 1) per unit length of the
wall.

Step 4. Obtain H and calculate r [see Eq. (4.40)].

Step 5. Find log r.

Step 6. Find the moment capacity of the pile section chosen in Step 1 as M, =o,;S.

Step 7. Determine M,/ M., . Note that M., is the maximum theoretical moment
determined before.

Step 8. Plot log r (Step 5) and M/ M.« in Figure 4.25.

Step 9. Repeat Steps 1 through 8 for several sections. The points that fall above the
curve (in loose sand or dense sand, as the case may be) are safe sections.

The points that fall below the curve are unsafe sections. The cheapest section may
now be chosen from those points which fall above the proper curve. Note that the

section chosen will have an M, , M pax.

Example 4.3:
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LetLl_305m L, = 61ml,—153m L=152m, ¢'=0, ¢' =30° y=16
kN/m’, v, = 19.5 kN/m?, and E = 207 X 10° MN/m? in Figure 9.17.

a. Determine the theoretical and actual depths of penetration. (Note: D
1-3Dlheory')

b. Find the anchor force per unit length of the wall.

¢. Determine the maximum moment, M

max*

actual —

Solution

Part a
We use the following table.

Quantity Eq.
required no. Equation and calculation
: d)') ( 30) 1

K —  tanf{45 - — | =tan}45 - =) ==

‘ 5 ( B el %)% 3

i ’ 30
Ky — tan'(45 + %—) tan” (45 + —) =3
K,—K, — 3-0333=2667
v —  Yar— Yo = 19.5 — 9.81 = 9.69 kN/m’
oy 9.1  yL,K, = (16)(3.05)(5) = 16.27 kN/m’
oy 92  (yL, +¥'Ly)K, =[(16)(3.05) + (9.69)(6.1)} = 35.97 kN/m’
o 35.97

L 9.6 - = = 1.39

3 Y(K, — K,)  (9.69)(2.667) 5
P — 01l + L, + 303 — o)L, + doily = () (16.27) (3.05)

+ (16.27)(6.1) + (3)(35.97 — 16.27) (6.1) + (3)(35.97)(1.39)
= 24.81 + 99.25 + 60.01 + 25.0 = 209.07 kN/m
3.05 6.1
24.8 39+ 61 +— )+ 1.39 + —

! My ( 1)([39 6 3) (9925)( 9 2) :

P

. 2 X 1.3 09,
3 (60.01)(1.39 i -6—'%—]) + (25.0)( : 9) el

421 m
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3P((Ly + L, + L) — (Z+ 1))

[ 9.67 L3+ 15L{(L+ L, + L;) — - - =
ot - Y&, = K) -

L} + 1.5L3(1.52 + 6.1 + 1.39)
(3)(209.07)[(3.05 + 6.1 + 1.39) — (4.21 + 1.53)]

(9.69) (2.667) 0
Ly=27m
Dtheor}' e Li+L,=139+27=409=4.1m
D"“l“"] S ]'SD'lheury =(1.3)(4.1) = 5.33 m

Part b
The anchor force per unit length of the wall is

F=P-3(K,-K,)L]
= 209.07 — (5)(9.69) (2.667) (2.7)> = 114.87 kN/m = 115 KN/m

Part ¢
From Eq. (9.69), for zero shear,

solLi— F+oj(z— L) +3Ky(z—- L) =0
Letz — L, = x, so that
lof,—F+ox+3Kyx*=0
or

(3)(16.27)(3.05) — 115 + (16.27)(x) + (3)(3)(9.69)x> = 0

giving x* + 10.07x — 55.84 =0

Now,x =4mandz = x + L, = 4 + 3.05 = 7.05 m. Taking the moment about the point
of zero shear, we obtain

5 | =

I ' 3.05 ’.1’3 1 iy
Mmax = _EUILI(«Y + T) + F(..'-\‘.' =tz 152) = 0'1_2_ = ‘2"K“}' .\"( )
or

42
Minix = —(%)(16.27)(3-05)(4 - 33&) (115) (4 + 1.52) — (16.27)(’5)

oo ) - o ‘,
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Example 4.4:

Refer to Example 9.5. Use Rowe’s moment reduction diagram (Figure 9.24) to find an ap-
propriate sheet pile section. For the sheet pile, use E = 207 X 10° MN/m’ and
ou = 172,500 kN/m?.

Solution
H =L, +L,+ D, =305+6.1+533=1448m

M.« = 3449 kN - m/m. Now the following table can be prepared.

B 10.91 x Md = Sa',“
- _7 H" Md
Section  /(m*/m) H'(m) 10 E log p S(m*/m) (kN -:-m/m) v,

PZ-22 1152%107° 1448 20.11X10™* -27 97 X 1073 167.33 0485
PZ-27 2515X107° 14.48 921 X 107* -3.04 1623 X 107° 284.84  0.826

Figure 9.25 gives a plot of M,/M,,,, versus p. It can be seen that PZ-27 will be
sufficient.

1.0

\ PZ-27
L]
0.8 \\
0.6 2
= 5 \\\
= |5 p7.22 ® | Loose sand
0.4 - _—
0.2
0
4.0 -35 -3.0 B4 2.0
Log p

Figure 9.25 Plot of M /M, versus log p
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4.9 Free Earth Support Method for Penetration of Clay

Figure 4.32 shows an anchored sheet-pile wall penetrating a clay soil and with a
granular soil backfill. The diagram of pressure distribution above the dredge line is
similar to that shown in Figure 4.9. From Eq. (4.26), the net pressure distribution
below the dredge line (fromz =L+ Lytoz=L; + L+ D) is

06 = 4c — (yLy + v'L,)
For static equilibrium, the sum of the forces in the horizontal direction is

P~ oD =F (441)

where
P, = area of the pressure diagram ACD
F = anchor force per unit length of the sheet-pile wall

x
l)
Lo - >
{'\ ’
_____ yWaterlevel _y M i NC_y ____y | Swd v
A\
Sand
Yoars &'

Dredge line
PR O |

| E

(-f:'luy_:

-

F 7o B
Figure 4.32 Anchored sheet-pile wall penetrating clay
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Again, taking the moment about O produces

T D
Pl(l'] e [’_'-‘ - [] = ::|) — (th([: -+ L-, + —1-) — ()

Simplification yields

oD+ 20D(Ly + Ly — 1)) = 2P(Li+ L, — I, — %) = 0 (4.42)

“]

Equation (4.42) gives the theoretical depth of penetration, D.

As in Section 4.7, the maximum moment in this case occurs atadepth L, ,z, L; + L.
The depth of zero shear (and thus the maximum moment) may be determined from
Eq. (4.39).

A moment reduction technique similar to that in Section 14.11 for anchored sheet
piles penetrating into clay has also been developed by Rowe (1952, 1957). This
technique is presented in Figure 4.33, in which the following notation is used:

1. The stability number is

=135 —
(yL, + y'L,) (4.43)

where ¢ = undrained cohesion (¢=0). For the definition of y, ¥, L, , and L, , see
Figure 4.32.

2. The nondimensional wall height is
a =
PR

actual

(4.44)

3. The flexibility number is p [see Eq. (4.40)]
4. M, = design moment
M,..x = maximum theoretical moment

The procedure for moment reduction, using Figure 4.33, is as follows:

Step 1. Obtain H = L; + L, + Dyeqal -

Step 2. Determine o = (L;+ Lz)/H' )

Step 3. Determine S, [from Eq. (4.43)].

Step 4. For the magnitudes of « and §, obtained in Steps 2 and 3, determine M, /M yax
for various values of log p from Figure 4.33, and plot M, /M.« against logp.
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Step 5. Follow Steps 1 through 9 as outlined for the case of moment reduction of
sheet-pile walls penetrating granular soil. (See Section 4.8.)

1.0

0.8 -
Ma’

nax

0.6

=

0.4

1.0
0.8
Md
"‘w[llﬁ.‘
0.6 -

0.4

L4 5
Logp=-20
0.8 —
M,
DB S - a=08
“‘\
0=

0.6
04 T T T T T T 1

0 0.5 1.0 L5 1.75
Stability number, S,

<

i e o e i w— i b i 1 it

Figure 4.33 Plot of MdyMmax against stability number for sheetpile wall penetrating
clay [after Rowe, (1957].
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Example 4.5:

¥ 3
In Figure 9.34, let L, =3m, L, = 6m, and /, = 1.5 m. Also, let y = 17 kN/m"
Ysu = 20kN/m’, ¢' = 35° and ¢ = 41 kN/m>

a. Determine the theoretical depth of embedment of the sheet-pile wall.
b. Calculate the anchor force per unit length of the wall.

Solution
Part a
We have
2 ! 2 35
K, = tan"| 45 — g = tan"| 45 — — | = 0.271
2 2
and
¢’ 5 35
Kp = tan2(45 + ?) = tan (45 + 3’) = 3.69

From the pressure diagram in Figure 9.36,

o1 = yLK, = (17)(3)(0.271) = 13.82 kKN/m?

o3 = (yLi + ¥ L) K, = [(17)(3) + (20 — 9.81)(6)](0.271) = 30.39 kN/m’

P =areas1+ 2+ 3 =1/2(3)(13.82) + (13.82)(6) + 1/2(30.39 — 13.82) (6)
= 20.73 + 82.92 + 49.71 = 153.36 kN/m

3 6 6
= (20-73)(6 + 5) + (82.92)(5) + (49.71)(5)
e

g 153.36
From Eq. (9.85),

06D’ + 204D(Ly + Ly — ) —2P(Ly+ L, - 4L — %) = 0

and

=32m

06 =4c — (YL + ¥'L,) = (4)(41) — [(17)(3)
+ (20 — 9.81)(6)] = 51.86 kN/m’

So,
(51.86) D* + (2)(51.86) (D) (3 + 6 — 1.5)
= 12)(15336)(3 +6~15-32)y=0
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A
I,=15m
Ly=3 I >
L=15m
SONON.. O Y e y_
— = 13.82 kN/m2 —
L, =

o’ = 30.39 kN/m?

Figure 9.36 Free earth
support method, sheet pile
o6 = 51.86 kN/m~ penetrating into clay

D>+ 15D - 2543 =0

Hence,

D= 1.6m

Part b
From Eq. (9.84),

F =P — o¢D = 15336 — (51.86)(1.6) = 70.38 kN/m
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4.10 Anchors

Sections 4.7 through 4.9 gave an analysis of anchored sheet-pile walls and discussed
how to obtain the force F per unit length of the sheet-pile wall that has to be sustained
by the anchors. The current section covers in more detail the various types of anchor
generally used and the procedures for evaluating their ultimate holding capacities.

The general types of anchor used in sheet-pile walls are as follows:

1. Anchor plates and beams (deadman)

2. Tie backs

3. Vertical anchor piles

4. Anchor beams supported by batter (compression and tension) piles

Anchor plates and beams are generally made of cast concrete blocks. (See Figure
4.36a.) The anchors are attached to the sheet pile by tie rods. A wale is placed at the
front or back face of a sheet pile for the purpose of conveniently attaching the tie rod
to the wall. To protect the tie rod from corrosion, it is generally coated with paint or
asphaltic materials.

In the construction of tiebacks, bars or cables are placed in predrilled holes (see
Figure 4.36b) with concrete grout (cables are commonly high-strength, prestressed
steel tendons). Figures 4.36¢c and 4.36d show a vertical anchor pile and an anchor
beam with batter piles.

Placement of Anchors

The resistance offered by anchor plates and beams is derived primarily from the
passive force of the soil located in front of them. Figure 4.36a, in which 4B is the
sheet-pile wall, shows the best location for maximum efficiency of an anchor plate. If
the anchor is placed inside wedge ABC, which is the Rankine active zone, it would
not provide any resistance to failure. Alternatively, the anchor could be placed in
zone CFEH. Note that line DFG is the slip line for the Rankine passive pressure. If
part of the passive wedge is located inside the active wedge ABC, full passive
resistance of the anchor cannot be realized upon failure of the sheet-pile wall.
However, if the anchor is placed in zone /CH, the Rankine passive zone in front of
the anchor slab or plate is located completely outside the Rankine active zone ABC.
In this case, full passive resistance from the anchor can be realized.

Figures 4.36b, 4.36¢c, and 4.36d also show the proper locations for the placement of
tiebacks, vertical anchor piles, and anchor beams supported by batter piles.
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Figure 4.36 Various types of anchoring for sheet-pile walls: (a) anchor plate or beam;
(b) tieback; (c) vertical anchor pile; (d) anchor beam with batter piles
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Capacity of Deadman (After Teng, 1969)

A series of deadmen (anchor beams, anchor blocks or anchor plates) are normally
placed at intervals parallel to the sheet pile walls. These anchor blocks may be
constructed near the ground surface or at great depths, and in short lengths or in one
continuous beam. The holding capacity of these anchorages is discussed below.

Continuous Anchor Beam Near Ground Surface (Teng, 1969)

If the length of the beam is considerably greater than its depth, it is called" a
continuous deadman. Fig. 4.37(a) shows a deadman. If the depth to the top of the
deadman, /4, 1s less than about onethird to one-half of H (where H is depth to the
bottom of the deadman), the capacity may be calculated by assuming that the top of
the deadman extends to the ground surface. The ultimate capacity of a deadman may
be obtained from (per unit length)

For granular soil (¢ = 0)

1 1
L=B-f, =5 Y K,~o 'K (4.45)

1
or T,=7 yH (K;Ky) (4.46)

For clay soil (¢ = 0)

1 1 22 2¢?

T =P -P = q Ht—yH? - ~yH?-q H+=— =2 H-=
9, H+>y Ve i =2, H=

(4.47)

where ¢, = unconfmed compressive strength of soil,
y = effective unit weight of soil, and
K, K, = Rankine's active and passive earth pressure coefficients.

It may be noted here that the active earth pressure is assumed to be zero at a depth =
2c/y which 1s the depth of the tension cracks. It is likely that the magnitude and
distribution of earth pressure may change slowly with time. For lack of sufficient data
on this, the design of deadmen in cohesive soils should be made with a conservative
factor of safety.

Short Deadman Near Ground Surface in Granular Soil (Fig. 4.37b)

If the length of a deadman is shorter than 54 (h = height of deadman) there will be
an end effect with regards to the holding capacity of the anchor. The equation
suggested by Teng for computing the ultimate tensile capacity T, is
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Ground surface
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=
(h+ hi2)

Deadman
(c)
Figure 4.37 Capacity of deadmen: (a) continuous deadmen near ground surface (h/H
<1/3 ~ 1/2); (b) short deadmen near ground surface; (c) deadmen at great depth
below ground surface (after Teng, 1969)

l / [ 3
?:{;L(PP—PG)+-§K¢}/( KP-i- KA)H tan ¢ (4.48)

where

h= height of deadman

h= depth to the top of deadman

L= length of deadman

H= depth to the bottom of the dead man from the ground surface
P, ,P, = total passive and active earth pressures per unit length

K= coefficient of earth pressures at-rest, taken equal to 0.4

v= effective unit weight of soil

K,, K,= Rankine's coefficients of passive and active earth pressures
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¢= angle of internal friction

Anchor Capacity of Short Deadman in Cohesive Soil Near Ground Surface
In cohesive soils, the second term of Eq. (4.48) should be replaced by the cohesive
resistance

T,=L(P,— B) + q,H* (4.49)
where ¢, = unconfmed compressive strength of soil.

Deadman at Great Depth
The ultimate capacity of a deadman at great depth below the ground surface as
shown in Fig. (4.37c) is approximately equal to the bearing capacity of a footing

whose base is located at a depth ( h + h/2), corresponding to the mid height of the
deadman (Terzaghi, 1943).
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5.1 Introduction

Sometimes construction work requires ground excavations with vertical or near-
vertical faces—for example, basements of buildings in developed areas or
underground transportation facilities at shallow depths below the ground surface (a
cut-and-cover type of construction). The vertical faces of the cuts need to be
protected by temporary bracing systems to avoid failure that may be accompanied by
considerable settlement or by bearing capacity failure of nearby foundations.

Figure 5.1 shows two types of braced cut commonly used in construction work. One
type uses the soldier beam (Figure 5.1a), which is driven into the ground before
excavation and is a vertical steel or timber beam. Laggings, which are horizontal
timber planks, are placed between soldier beams as the excavation proceeds. When
the excavation reaches the desired depth, wales and struts (horizontal steel beams)
are installed. The struts are compression members. Figure 5.1b shows another type of
braced excavation. In this case, interlocking sheet piles are driven into the soil before
excavation. Wales and struts are inserted immediately after excavation reaches the
appropriate depth.

Figure 5.2 shows the braced-cut construction used for the Chicago subway in 1940.
Timber lagging, timber struts, and steel wales were used. Figure 5.3 shows a braced
cut made during the construction of the Washington, DC, metro in 1974. In this cut,
timber lagging, steel H-soldier piles, steel wales, and pipe struts were used.

To design braced excavations (i.e., to select wales, struts, sheet piles, and soldier
beams), an engineer must estimate the lateral earth pressure to which the braced cuts
will be subjected. The theoretical aspects of the lateral earth pressure on a braced cut
is discussed in Section 5.2. The total active force per unit length of the wall (P,) can
be calculated by using the general wedge theory. However, that analysis will not
provide the relationships required for estimating the variation of lateral pressure with
depth, which is a function of several factors, such as the type of soil, the experience
of the construction crew, the type of construction equipment used, and so forth. For
that reason, empirical pressure envelopes developed from field observations are used
for the design of braced cuts. This procedure is discussed in the following sections.
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Wale Strut

: Strut
Soldier
. be:
Lagging cam ‘3
Lagging Wale
Wedge
Elevation Plan
(a)
Wale Strut

Strut

Sheet
pile

Elevation Plan
(b)

Figure 5.1 Types of braced cut: (a) use of soldier beams; (b) use of sheet piles
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Figure 5.2 Braced cut in Chicago Subway constructlon J anuary 1940 (Courtesy of
Ralph B. Peck)

Figure 5.3 Braced cut in the construction of Wahon, D.C. Metro, May
1974 (Courtesy of Ralph B. Peck)
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5.2 Pressure Envelope for Braced-Cut Design

As mentioned in Section 5.1, the lateral earth pressure in a braced cut is
dependent on the type of soil, construction method, and type of equipment
used. The lateral earth pressure changes from place to place. Each strut
should also be designed for the maximum load to which it may be
subjected. Therefore, the braced cuts should be designed using apparent-
pressure diagrams that are envelopes of all the pressure diagrams
determined from measured strut loads in the field. Figure 5.4 shows the
method for obtaining the apparent-pressure diagram at a section from strut
loads. In this figure, let P, , P, , P;, P, , .... be the measured strut loads.
The apparent horizontal pressure can then be calculated as

P,
iF] = d
(s)(d, + ?)
P,
TV d
2 aj
(T)(_E‘ + ?)
Py
BT &
3 ay
“(3*5
Py
U4 —

Figure 5.4 Procedure for calculating apparent-pressure diagram from measured strut
loads
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where
o1, 0y, O3 , O4 = apparent pressures
S= center-to-center spacing of the struts

Using the procedure just described for strut loads observed from the Berlin subway
cut, Munich subway cut, and New York subway cut, Peck (1969) provided the
envelope of apparent-lateral-pressure diagrams for design of cuts in sand. This
envelope is illustrated in Figure 5.5, in which

o, = 0.65yHK, 5.1)

where

y = unit weight

H = height of the cut

K, = Rankine active pressure coefficient = (tan*(45+¢/2)

1

¢ = effective friction angle of sand

Cuts in Clay

In a similar manner, Peck (1969) also provided the envelopes of apparent-lateral-
pressure diagrams for cuts in soft to medium clay and in stiff clay. The pressure
envelope for soft to medium clay is shown in Figure 5.6 and is applicable to the
condition

where ¢ = undrained cohesion ¢ =0.
The pressure, o,, is the larger of

4c
i ””[1 B (EH (52)

where y = unit weight of clay.
The pressure envelope for cuts in stiff clay is shown in Figure 5.7, in which

o, = 02yH t0 0.4yH (with an average of 0.3yH) (5.3)
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is applicable to the condition yH/c < 4.

a3
3
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-
-
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- —
&,
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-

Y

Figure 10.5 Peck’s (1969)
apparent-pressure envelope

for ¢

uts in sand

f———— —_— >
rru

0.75H

A

g, 8

Figure 10.6 Peck’s (1969)
apparent-pressure envelope for
cuts in soft to medium clay

]
/
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<
| .

QIS H TS
)

Figure 10.7 Peck’s (1969)
apparent-pressure envelope
for cuts in stiff clay

When using the pressure envelopes just described, keep the following points in

mind:

5.3 Pressure Envelope for Cuts in Layered Soil

1. They apply to excavations having depths greater than about 6m(=20ft).
2. They are based on the assumption that the water table is below the bottom of

the cut.

3. Sand is assumed to be drained with zero pore water pressure.
4. Clay 1s assumed to be undrained and pore water pressure is not considered.

Sometimes, layers of both sand and clay are encountered when a braced cut is being
constructed. In this case, Peck (1943) proposed that an equivalent value of cohesion
(¢ =0) should be determined according to the formula (see Figure 5.8a).

C

1
s 53 2H[

where

v.KH{ tan ¢; + (H — H)n'q,]

H = total height of the cut

¥, = unit weight of sand
H= height of the sand layer
K= a lateral earth pressure coefficient for the sand layer (=1)

(5.4)
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@'=5 effective angle of friction of sand
q,= unconfined compression strength of clay

n = a coefficient of progressive failure (ranging from 0.5 to 1.0; average value
0.75)

A T _ Y
_ Sand

(a} h

Figure 5.8 Layered soils in braced cuts

The average unit weight of the layers may be expressed as

e s
Ya= g [v,H, + (H — H,)y,] (5.5)

where y. = saturated unit weight of clay layer.

Once the average values of cohesion and unit weight are determined, the pressure
envelopes in clay can be used to design the cuts.

Similarly, when several clay layers are encountered in the cut (Figure 5.8b), the
average undrained cohesion becomes

1
Ca\' = E{CIHI T CEH.'! el 5 CH'HH) (56)

where
ci,C, ..., cp=undrained cohesion in layers 1, 2, ... , n
H,,H,, ..., H,=thickness of layers 1, 2, ... , n
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The average unit weight is now

|
Ya = ﬁ(’}’lHl t+ vty + vl + - o+ + y,H,) (5.7)

5.4 Design of Various Components of a Braced Cut Struts

In construction work, struts should have a minimum vertical spacing of about 2.75
m (9 ft) or more. Struts are horizontal columns subject to bending. The load-carrying
capacity of columns depends on their slenderness ratio, which can be reduced by
providing vertical and horizontal supports at intermediate points. For wide cuts,
splicing the struts may be necessary. For braced cuts in clayey soils, the depth of the
first strut below the ground surface should be less than the depth of tensile crack, z..
From Eq. (5.7),

frl’f = '}J:K“ - 2(.’.\/‘/;\’{!

where K, = coefficient of Rankine active pressure.
For determining the depth of tensile crack,

o,=0=yz.K, — 2(\/;‘(._”

or

L

A simplified conservative procedure may be used to determine the strut loads.
Although this procedure will vary, depending on the engineers involved in the
project, the following is a step-by-step outline of the general methodology (see Figure
5.9):

Step 1. Draw the pressure envelope for the braced cut. (See Figures 5.5, 5.6, and
5.7.) Also, show the proposed strut levels. Figure 5.9a shows a pressure
envelope for a sandy soil; however, it could also be for a clay. The strut
levels are marked 4, B, C, and D. The sheet piles (or soldier beams) are
assumed to be hinged at the strut levels, except for the top and bottom
ones. In Figure 5.9a, the hinges are at the level of struts B and C. (Many
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designers also assume the sheet piles or soldier beams to be hinged at all
strut levels except for the top.)

Step 2. Determine the reactions for the two simple cantilever beams (top and
bottom) and all the simple beams between. In Figure 5.9b, these

reactions are A, B, , B>, C;, C,, and D.

Step 3. The strut loads in the figure may be calculated via the formulas

Py = (A)(s)
Pg = (B, + By)(s)
Fc = (C + G)(s) (5-8)
and

Py = (D)(s)

where

Pa, Pg, Pc, Pp=loads to be taken by the individual struts at levels A,B, C, and D,

respectively
A, By, B,,C;, C,, D=reactions calculated in Step 2 (note the unit: force/unit length
of the braced cut)

s = horizontal spacing of the struts (see plan in Figure 5.9a)

Step 4. Knowing the strut loads at each level and the intermediate bracing
conditions allows selection of the proper sections from the steel manual
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Figure 5.9 Determination of strut loads: (a) section and plan of the cut; (b) method
for determining strut loads
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Sheet Piles

The following steps are involved in designing the sheet piles:

Step 1. For each of the sections shown in Figure 15.11b, determine the maximum
bending moment.

Step 2. Determine the maximum value of the maximum bending moments (M yax)
obtained in Step 1. Note that the unit of this moment will be, for example,
kN-m/m length of the wall.

Step 3. Obtain the required section modulus of the sheet piles, namely,

l"‘/fmti.)&
Q) (5.9)

T

where o, = allowable flexural stress of the sheet-pile material.

Step 4. Choose a sheet pile having a section modulus greater than or equal to the
required section modulus from a table such as Table 4.1.

Wales
Stepl. Wales may be treated as continuous horizontal members if they are spliced
properly. Conservatively, they may also be treated as though they are pinned
at the struts. For the section shown in Figure 5.9a, the maximum moments for
the wales (assuming that they are pinned at the struts) are,

Atlevel A, M, =

Y max g

B, + :
Atlevel B, M, (B + By)s

' 8
o X 2
Atlevel C, M, = (G + G)s

8

and
A D, M= )8(5”_)_

where 4, By, B, , C;, C,, and D are the reactions under the struts per unit length of
the wall (see Step 2 of strut design).
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Step 2. Determine the section modulus of the wales:

M

a

max

§ =

all

The wales are sometimes fastened to the sheet piles at points that satisfy the lateral
support requirements.

Example 5.1:
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The cross section of a long braced cut is shown in Figure 10.10a.

a. Draw the earth-pressure envelope.

b. Determine the strut loads at levels A, B, and C.

¢. Determine the section modulus of the sheet pile section required.
d. Determine a design section modulus for the wales at level B.

(Note: The struts are placed at 3 m, center to center, in the plan.) Use

o = 170 X 10° kN/m?

Solution
Part a
We are given that y = 18 kN/m?% ¢ = 35 kN/m? and H = 7 m. So,
H 18)(7
g
& 35

Thus, the pressure envelope will be like the one in Figure 10.7. The envelope is
plotted in Figure 10.10a with maximum pressure intensity, o, equal to
0.3yH = 0.3(18)(7) = 37.8 KN/m’.

Part b
To calculate the strut loads, examine Figure 10.10b. Taking the moment about B,, we
have 2 My = 0, and

A(25) — (%)(37.8)(1.75)(1.’.’5 + '—37~—5~) - (1.75)(37.8)<1'—2:5) =0

or
A = 54.02 kN/m
Also, X vertical forces = 0. Thus,

3(1.75)(37.8) + (37.8)(1.75) = A + B,

or
33.08 + 66.15 — A = B,
So,
B, = 452 kN/m
Due to symmetry,
B, = 452 kN/m

and

C = 54.02kN/m
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(c) Shear force diagram

Figure 10.70 Analysis of a braced cut



Chapter Five Braced Cuts Dr. Ahmed H. Abdulkareem

Hence, the strut loads at the levels indicated by the subscripts are

P, = 54.02 X horizontal spacing, s = 54.02 X 3 = 162.06 kN
P, = (B, + B,)3 = (452 + 45.2)3 = 271.2kN

and

Pe = 54.02 X 3 = 162.06 kN

Part c

At the left side of Figure 10.10b, for the maximum moment, the shear force should be
zero. The nature of the variation of the shear force is shown in Figure 10.10c. The loca-
tion of point E can be given as

reaction at B, 45.2

= = = 1.196
x e .. -
Also,
37.8 1
Magnitude of tat A = —(1 X =
agnitude of moment a ( )(175 l)(3)
= 3.6 kN-m/meter of wall
and

1.196
Magnitude of moment at £ = (45.2 X 1.196) — (37.8 X 1. 196)( > )

= 54.06 — 27.03 = 27.03 kN-m/meter of wall

Because the loading on the left and right sections of Figure 10.10b are the same,
the magnitudes of the moments at F and C (see Figure 10.10c) will be the same as
those at E and A, respectively. Hence, the maximum moment is 27.03 kN-m/meter
of wall.

The section modulus of the sheet piles is thus

M, 27.03 kKN-m

S = = > = 15.9 x 107°m’/m of the wall
T i 170 X 10° kN/m?

Partd

The reaction at level B has been calculated in part b. Hence,

(Bi+ By))s* (452+452)%
8 2 8

Mmax = = 101.7 kN-m

and

1017 101.7
T (170 X 1000)

= 0.598 X 10°m’ 9

Section modulus, S =
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Example 10.2 B |

Refer to the braced cut shown in Figure 10.11, for which y = 17 kN/m?, ¢' = 350
and ¢ = 0. The struts are located 4 m on center in the plan. Draw the earth- g

; prCSSUre
envelope and determine the strut loads at levels A, B, and C.

Solution
For this case, the earth-pressure envelope shown in Figure 10.5 is applicable. Hence

2 ' > 3
K, = tan® (45 S ?L) = tan” (45 = -E) = 0.271
2 2
From Equation (10.1)
o, =0.65yHK, = (0.65)(17)(9)(0.271) = 26.95 kN/m’
Figure 10.12a shows the pressure envelope. Refer to Figure 10.12b and calculate B,;
2 Mp =0

(26.95) (5)(%)

A= - = 112.29 kN/m

B, = (26.95)(5) — 112.29 = 22.46 kN/m

Now, refer to Figure 10.12¢ and calculate B,:

2 M, =0

Sand

Figure 10.11
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A -
“2 m
A—X >
Im |g \-,.
¥
B—“——-—}-

o, = 0.65yHK,

= 26.95 kN/m?

(a)

26.95 26.95
kN/m? kN/m?
y y y y Y v y y y
2m 3m ‘ T 3m T I m
A B, B, C
(b) (c) Figure 10.12 Load diagrams
4
(26.95)(4)( 5
C= : = 71.87 kN/m

B, = (26.95)(4) — 71.87 = 35.93 kN/m
The strut loads are
AtA, (112.29)(spacing) = (112.29)(4) = 449.16 kN
At B, (B, + B,)(spacing) = (22.46 + 35.93)(4) = 233.56 kN
At C, (71.87)(spacing) = (71.87)(4) = 287.48 kN
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Introduction
An exposed ground surface that stands at an angle with the horizontal is called an
unrestrained slope. The slope can be natural or constructed. If the ground surface
is not horizontal, a component of gravity will cause the soil to move downward, as
shown in Figure 6.1. If the component of gravity is large enough, slope failure can
occur; that is, the soil mass in zone abcdea can slide downward. The driving force
overcomes the resistance from the shear strength of the soil along the rupture surface.

In many cases, civil engineers are expected to make calculations to check the safety
of natural slopes, slopes of excavations, and compacted embankments. This process,
called slope stability analysis, involves determining and comparing the shear stress
developed along the most likely rupture surface with the shear strength of the soil.

The stability analysis of a slope is not an easy task. Evaluating variables such as the
soil stratification and its in-place shear strength parameters may prove to be a
formidable task. Seepage through the slope and the choice of a potential slip surface
add to the complexity of the problem. This chapter explains the basic principles
involved in slope stability analysis.

Figure 6.1 Slope failure

6.1 Factor of Safety

The task of the engineer charged with analyzing slope stability is to determine the
factor of safety. Generally, the factor of safety is defined as
Tf
s i (6-1)

B
where
F'S; = factor of safety with respect to strength
1,= average shear strength of the soil
7,= average shear stress developed along the potential failure surface
The shear strength of a soil consists of two components, cohesion and friction, and
may be expressed as

=+ o' tan @’ (6-2)
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where

¢ = cohesion

¢ = drained angle of friction

o= effective normal stress on the potential failure surface.

In a similar manner, we can also write

!

Ta = Cygtotand, (63

where ¢, and ¢, are, respectively, the effective cohesion and the angle of friction
that develop along the potential failure surface. Substituting Egs. (6.2) and (6.3) into
Eq. (6.1), we get

FoC ol tang (6-4)
"o chtotangy

Now we can introduce some other aspects of the factor of safety-that is, the factor of
safety with respect to cohesion, FS. , and the factor of safety with respect to friction,
FSy They are defined as follows:

Fp == (6-5)
and
li' ..__'E"_tgu .4; (6-6
“i¥-tan ¢,

When Egs. (6.4), (6.5), and (6.6) are compared, we see that when FS, becomes equal
to FSy , that 1s the factor of safety with respect to strength. Or, if

¢’ tan @’
c;, tan oy

(6-7)

we can write
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When FS; is equal to 1, the slope is in a state of impending failure. Generally, a value
of 1.5 for the factor of safety with respect to strength is acceptable for the design of a
stable slope.

6.2 Stability of Infinite Slopes

In considering the problem of slope stability, we may start with the case of an infinite
slope, as shown in Figure 6.2. An infinite slope is one in which His much greater than
the slope height. The shear strength of the soil may be given by [Eq. (6.2)]

7= ¢ + o' tan @'

We will evaluate the factor of safety against a possible slope failure along a plane
AB located at a depth H below the ground surface. The slope failure can occur by the
movement of soil above the plane 4B from right to left.

Let us consider a slope element, abcd, that has a unit length perpendicular to the
plane of the section shown. The forces, F, that act on the faces ab and cd are

Figure 6.2 Analysis of infinite slope (without seepage)
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equal and opposite and may be ignored. The effective weight of the soil element is
(with pore water pressure equal to 0)

W = (Volume of soil element) X (Unit weight of soil) = yLH (6-8)

The weight W can be resolved into two components:

1. Force perpendicular to the plane AB = N, = Wcos B = yLH cos .
2. Force parallel to the plane AB = T, = W sin 8 = yLH sin B. Note that this is
the force that tends to cause the slip along the plane.

Thus, the effective normal stress and the shear stress at the base of the slope
element can be given, respectively, as

N, yLH cos ,

i = £ H 2

7 7 Area of base ( T ) yH cos™ B (6-9)
cos B
And

- 7, _yLHsinB _ . (6-10)

"~ Areaof base ( L\ yH cos Bsin B
cos 8

The reaction to the weight Wis an equal and opposite force R. The normal and
tangential components of R with respect to the plane AB are

N, = Rcosf3 = Wcosf (6-11)
and

T,=Rsinf = Wsin (6-12)

For equilibrium, the resistive shear stress that develops at the base of the element is
equal to (7,)/(Area of base) = yH sin B cos 3. The resistive shear stress may also be
written in the same form as Eq. (14.3):

T4 = Cy + o’ tan ¢

The value of the effective normal stress is given by Eq. (6.9). Substitution of Eq.
(6.9) into Eq. (6.3) yields
' 2 1
T4 = Ccy + yH cos” B tan ¢ (6-13)

This
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vH sin B cos B = ¢ + yH cos® B tan ¢
Or

¥

Cd : 2
— =smpBcosB —cos" Bt !
H B B B tan ¢

= cos® B(tanf — tan @) (6-14)

The factor of safety with respect to strength was defined in Eq. (6.7), from which

tan qb' c’

F and Cd:E

tan ¢, =

Substituting the preceding relationships into Eq. (6.14), we obtain

¢ tangt
F=— 5 ——ip Y (6-15)
ooyHcos Btan B ta
For granular soils, ¢' = 0, and the factor of safety, F;, becomes equal to

(tan ¢')/(tan B). This indicates that in an infinite slope in sand, the value of F; is in-
dependent of the height # and the slope is stable as long as 8 < ¢'.

' If a soil possesses cohesion and friction, the depth of the plane along which
critical equilibrium occurs may be determined by substituting F, = 1 and H = H,,
into Eq. (14.15). Thus,

¥ cos? B(tan B — tan @)

H, =

(6-16)

If there is seepage through the soil and the ground water level coincides with the
ground surface as shown in Figure 6.3, the factor of safety with respect to strength
can be obtained as

14

S ey md )
' S')’satH 9032‘:6 tan B Ysat tanﬁ L

B R R e e R L L TR
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Direction

/ of seepage
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Figure 6.3Infinite slope with seepage

6.3 Finite Slopes

When the value of H,. approaches the height of the slope, the slope is generally
considered finite. When analyzing the stability of a finite slope in a homogeneous
soil, for simplicity, we need to make an assumption about the general shape of the
surface of potential failure. Although there is considerable evidence that slope
failures usually occur on curved failure surfaces, Culmann (1875) approximated the
surface of potential failure as a plane. The factor of safety, FSs, calculated using
Culmann’s approximation gives fairly good results for near-vertical slopes only.

After extensive investigation of slope failures in the 1920s, a Swedish geotechnical
commission recommended that the actual surface of sliding may be approximated to
be circularly cylindrical. Since that time, most conventional stability analyses of
slopes have been made by assuming that the curve of potential sliding is an arc of a
circle. However, in many circumstances (for example, zoned dams and foundations
on weak strata), stability analysis using plane failure of sliding is more appropriate
and yields excellent results.



Chapter SIX SLOPE STABILITY Dr, Ahmed H, Abdulkareem

Analysis of Finite Slope with Plane Failure Surface (Culmann’s Method)

This analysis is based on the assumption that the failure of a slope occurs along a
plane when the average shearing stress that tends to cause the slip is greater than the
shear strength of the soil. Also, the most critical plane is the one that has a minimum
ratio of the average shearing stress that tends to cause failure to the shear strength of
soil.

Figure 6.4 shows a slope of height H. The slope rises at an angle  with the
horizontal. AC is a trial failure plane. If we consider a unit length perpendicular to the
section of the slope, the weight of the wedge ABC = W-

W = $(H)(BC)(1)(y) = LH(H cot® — Hcot B)y

_5 Sin 1 - (6-19)
_27 Lmﬁm } '

T=c'+0'tan ¢’
Unit weight of soil =y

Figure 6.4 Finite slope analysis—Culmann’s method
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The normal and tangential components of W with respect to the plane AC are

as follows:
"N, = nérmal component = Wcos 6 = E}nr'-f{iifll(ﬁ -H 8)]c:ms 6  (14.30)
9 2 sin B sin #
T, = tangential component = Wsin 6 = lQ.JHZ M]sin 6 (14.31)
° 2 sin 8 sin 6

The average effective normal stress and the average shear stress on the plane
AC are, respectively,

. .Nru . JVG
7T @ow ( H )
sin A
1 sin(8 — 6) .
= e ST A . X 4179
Z}JH{ Sin B sin 0 cos fsin (14.32)
and )
- E ?—;J . - Ta
7 Ya)) ( H )
. sin f

4 sin(B—f?)}.l .
= 2';/H[ S Boin D sin- @ (14.33)

The average resistive shearing stress developed along the plane AC may also
be expressed as

Tqg = C:i 4+ Cr‘ tan ¢:i

s o Hrin(ﬁ—@)} 6 sin 6 tan ¢, 14.34
=cat 5y sin Bsin 0 cos 6 sin 6 tan ¢, (14.34)

Now, from Eqs. (14.33) and (14.34),
1 fsin(B—-06)) , 1 [sin(8—#) . , .
'E?H[W}Sm 8 =cy+ 57 {m cos fsin 6 tan ¢p; (14.35)

or
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or

_ lyH{sin(B — 6)(sin 8 — cos 6 tan ¢}) (14.36)

sin 3

The expression in Eq. (14.36) is derived for the trial failure plane AC. In an ef-

fort to determine the critical failure plane, we must use the principle of maxima and

minima (for a given value of ¢;) to find the angle 6 where the developed cohesion

would be maximum. Thus, the first derivative of ¢, with respect to 0 is set equal to
Z€ro, or

% _ 9 1437
0 (14.37)
Because y. H, and (8 are constants in Eq. (14.36), we have

% [sin(B — 6)(sin§ — cos@tan ¢y)] = 0 (14.38)

Solving Eq. (14.38) gives the critical value of 8, or
_Bt+d

- 14.39
b = = (14.39)
Substitution of the value of 8 = Gf, into Eq. (14.36) }rields
H 1=
i 7 [ - cosp= 9| -
o4 sm B [ 3
The preceding equation can also be written as
J 1 e S ?
. 1= coslB—dy) (1441
vH 4 sin B cos ¢

where )n = stability number.
The maximum height of the slope for which critical equilibrium occurs can be
obtained by substituting c¢; = ¢’ and &, = ¢' into Eq. (14.40). Thus,

& sin B cos ¢' 1
H, Fd ey (14.42)




